Skip to main content
Log in

Quantum private comparison protocol with d-dimensional Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a quantum private comparison protocol with Bell states is proposed. In the protocol, two participants can determine the relationship between their secret inputs in size, with the assistance of a semi-trusted third party. The presented protocol can ensure fairness, correctness, and security. Meanwhile, all the particles undergo only a one-way trip, which improves the efficiency and security of the communication. Furthermore, only Bell states are exploited in the implementation of the protocol, and two participants are just required having the ability to perform single particle operations, which make the presented protocol more feasible in technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175-C179. IEEE, New York (1984)

  2. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Hillery M., Buz̆ek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  5. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  6. Tittel W., Zbinden H., Gisin N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

  7. Guo G.P., Guo G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Lance A.M., Symul T., Bowen W.P., Sanders B.C., Lam P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  9. Xiao L., Long G.-L., Deng F.-G., Pan J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  10. Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.-Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  11. Hsu L.-Y., Li C.-M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005)

    Article  ADS  Google Scholar 

  12. Yan F.-L., Gao T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  13. Qin S.-J., Gao F., Wen Q.-Y., Zhu F.-C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  14. Yu I-C., Lin F.-L., Huang C.-Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78, 012344 (2008)

    Article  ADS  Google Scholar 

  15. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  16. Li Q., Chan W.H., Long D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)

    Article  ADS  Google Scholar 

  17. Li Q., Long D.Y., Chan W.H., Qiu D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10, 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi R.-H., Huang L.-S., Yang W., Zhong H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nie Y.-Y., Li Y.-H., Liu J.-C., Sang M.-H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457 (2011)

    Article  ADS  Google Scholar 

  20. Boströem K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  21. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  22. Deng F.G., Long G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  23. Cai Q.Y., Li B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  24. Wang C., Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  25. Li X.H., Deng F.G., Zhou H.Y.: Improving the security of secure direct communication based on the secret transmitting order. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  26. Lucamarini M., Mancini S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  27. Wang C., Deng F.G., Long G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  28. Zhu A.D., Xia Y., Fan Q.B., Zhang S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  29. Wang J., Zhang Q., Tang C.J.: Multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 266, 732 (2006)

    Article  ADS  Google Scholar 

  30. Jin X.R., Ji X., Zhang Y.Q. et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006)

    Article  ADS  Google Scholar 

  31. Lin S., Wen Q.-Y., Gao F., Zhu F.-C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  32. Zhan Y.-B., Zhang L.-L., Zhang Q.-Y.: Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt. Commun. 282, 4633 (2009)

    Article  ADS  Google Scholar 

  33. Chamoli A., Bhandari C.M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8, 347–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao F., Qin S.-J., Wen Q.-Y., Zhu F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  35. Xiu X.-M., Dong L., Gao Y.-J.: Secure four-site distribution and quantum communication of X type entangled states. Opt. Commun. 284, 2065 (2011)

    Article  ADS  Google Scholar 

  36. Yang Y.-G., Wen Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. Chen X.-B., Xu G., Niu X.-X., Wen Q.-Y., Yang Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561 (2010)

    Article  ADS  Google Scholar 

  38. Jia H.-Y., Wen Q.-Y., Song T.-T., Gao F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545 (2011)

    Article  ADS  Google Scholar 

  39. Liu W., Wang Y.-B., Jiang Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160 (2011)

    Article  ADS  Google Scholar 

  40. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with X-type state. Int. J. Theor. Phys. (online)

  41. Yao A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–162. IEEE Computer Society Press, Silver Spring (1982)

  42. Lo H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154 (1997)

    Article  ADS  Google Scholar 

  43. Li C.Y., Zhou H.Y., Wang Y., Deng F.G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22, 1049–1052 (2005)

    Article  ADS  Google Scholar 

  44. Li C.Y., Li X.H., Deng F.G., Zhou P., Liang Y.J., Zhou H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896–2899 (2006)

    Article  ADS  Google Scholar 

  45. Li X.H., Deng F.G., Li C.Y., Liang Y.J., Zhou P., Zhou H.Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354 (2006)

    Google Scholar 

  46. Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  47. Gao F., Qin S.J., Wen Q.Y., Zhu F.C.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  49. Gao F., Guo F.Z., Wen Q.Y., Zhu F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  50. Song T.T., Zhang J., Gao F., Wen Q.Y., Zhu F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  51. Guo F.Z., Qin S.J., Gao F., Lin S., Wen Q.Y., Zhu F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S., Sun, Y., Liu, XF. et al. Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf Process 12, 559–568 (2013). https://doi.org/10.1007/s11128-012-0395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0395-6

Keywords

Navigation