Skip to main content
Log in

Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

From the perspective of quantum circuit, a construction framework and a measurement framework of a general kind of four-qubit states are sketched, respectively. By utilizing the properties of this kind of states, a quantum secure direct communication (QSDC) protocol is put forward, which adopts the idea of optimal quantum superdense coding to achieve a maximal efficiency and high resources capacity. The security of the proposed protocol is discussed in detail and it is proved to be secure theoretically. Moreover, the sufficient and necessary condition of which multipartite states are suitable for optimal quantum superdense coding in quantum secure direct communication is figured out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  2. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C.H., Brassard G., Mermin N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bruβ D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018–3021 (1998)

    Article  ADS  Google Scholar 

  6. Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Beige A., Englert B.G., Kurtsiefer C., Weinfurter H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)

    ADS  Google Scholar 

  8. Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  9. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  10. Deng F.G., Long G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  11. Lucamarini M., Mancini S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  12. Wang C., Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  13. Li X.H., Li C.Y., Deng F.G., Zhou P., Liang Y.J., Zhou H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149–2153 (2007)

    Article  ADS  Google Scholar 

  14. Long G.L., Deng F.G., Wang C., Li X.H.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)

    Article  ADS  Google Scholar 

  15. Chamoli A., Bhandari C.M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8, 347–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong L., Dong H.K., Xiu X.M., Gao Y.J., Chi F.: Quantum secure direct communication using a six-qubit maximally entangled state with dense coding. Int. J. Quantum Inf. 7, 645–651 (2009)

    Article  MATH  Google Scholar 

  17. Qin S.J., Wen Q.Y., Meng L.M., Zhu F.C.: Quantum secure direct communication over the collective amplitude damping channel. Sci. China Ser. G Phys. Mech. Astron. 52, 1208–1212 (2009)

    Article  ADS  Google Scholar 

  18. Xiu X.M., Dong L., Gao Y.J., Chi F.: Quantum secure direct communication using six-particle maximally entangled states and teleportation. Commun. Theor. Phys. 51, 429–432 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Zhang X.L., Zhang Y.X., Wei H.: Quantum secure direct communication with Greenberger-Horne-Zeilinger-type state (GHZ state) over noisy channels. Chin. Phys. B 18, 435–439 (2009)

    Article  ADS  Google Scholar 

  20. Lu C.Y., Wang S.A., Cheng Y.J., Kuo S.Y.: Quantum secure direct communication with a constant number of EPR pairs. Int. J. Quantum Inf. 8, 1355–1371 (2010)

    Article  MATH  Google Scholar 

  21. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Robust quantum secure direct communication over collective rotating channel. Commun. Theor. Phys. 53, 645–647 (2010)

    Article  ADS  MATH  Google Scholar 

  22. Wang C., Hao L., Song S.Y., Long G.L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8, 443–450 (2010)

    Article  MATH  Google Scholar 

  23. Yang J., Wang C.A., Zhang R.: Faithful quantum secure direct communication protocol against collective noise. Chin. Phys. B 19, 110306 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. Liu Z.H., Chen H.W., Liu W.J., Xu J., Li Z.Q.: Analyzing and revising a two-way protocol for quantum cryptography with a nonmaximally entangled qubit pair. Int. J. Quantum Inf. 9, 1329–1339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gu B., Huang Y.G., Fang X., Zhang C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  26. Gu B., Zhang C.Y., Cheng G.S., Huang Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942–947 (2011)

    Article  ADS  Google Scholar 

  27. Lin S., Gao F., Liu X.F.: Quantum secure direct communication with five-qubit entangled state. Chin. Phys. Lett. 28, 030302 (2011)

    Article  ADS  Google Scholar 

  28. Wang T.J., Li T., Du F.F., Deng F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  29. Wu Y.H., Zhai W.D., Cao W.Z., Li C.: Quantum secure direct communication by using general entangled states. Int. J. Theor. Phys. 50, 325–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang Y.G., Teng Y.W., Chai H.P., Wen Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol [quantum inf. Process. 8, 347 (2009)]. Quantum Inf. Process. 10, 317–323 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu Z.H., Chen H.W., Liu W.J., Xu J., Li Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. China Inf. Sci. 55, 360–367 (2012)

    Article  MathSciNet  Google Scholar 

  32. Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  33. Lin S., Wen Q.Y., Gao F., Zhu F.C.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  34. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  35. Cao W.F., Yang Y.G., Wen Q.Y.: Quantum secure direct communication with cluster states. Sci. China Phys. Mech. Astron. 53, 1271–1275 (2010)

    Article  ADS  Google Scholar 

  36. Tsai C.W., Hsieh C.R., Hwang T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)

    Article  ADS  Google Scholar 

  37. Bennett C.H., Bessette F., Brassard G., Salvail L., Smolin J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  38. Bechmann-Pasquinucci H., Tittel W.: Quantum cryptography using larger alphabets. Phys. Rev. A 6106, 062308 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  39. Bruβ D., D’Ariano G.M., Lewenstein M., Macchiavello C., Sen A., Sen U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Chen, H., Liu, W. et al. Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf Process 12, 587–599 (2013). https://doi.org/10.1007/s11128-012-0404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0404-9

Keywords

Navigation