Abstract
Through introducing discrete-time quantum walks on the infinite line and on circles, we present a kind of two-particle interacting quantum walk which has two kinds of interactions. We investigate the characteristics of this kind of quantum walk and the time evolution of the two particles. Then we put forward a kind of quantum Hash scheme based on two-particle interacting quantum walks and discuss their feasibility and security. The security of this kind of quantum Hash scheme relies on the infinite possibilities of the initial state rather than the algorithmic complexity of hard problems, which will greatly enhance the security of the Hash schemes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kempe J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307 (2003)
Santha, M.: Theory and Applications of Models of Computation. Lecture Notes in Computer Science, Vol. 4978, edited by Agrawal, M., Du, D., Duan, Z., Li, A. (Springer, Berlin, 2008), p. 31C46
Shenvi N., Kempe J., Whaley K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)
Hein B., Tanner G.: Quantum search algorithms on a regular lattice. Phys. Rev. A 82, 012326 (2010)
Ambainis, A.: Quantum walk algorithm for element distinctness. quant-ph/0311001
Omar Y., Paunković N., Sheridan L., Bose S.: Quantum walk on a line with two entangled particles. Phys. Rev. A 74, 042304 (2006)
Pathak P.K., Agarwal G.S.: Quantum random walk of two photons in separable and entangled states. Phys. Rev. A 75, 032351 (2007)
Berry S.D., Wang J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)
Campari R., Cassi D.: Statistics of reciprocal distances for random walks of three particles in one dimension. Phys. Rev. E 83, 041107 (2011)
Gamble J.K., Friesen M., Zhou D., Joynt R., Coppersmith S.N.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81, 052313 (2010)
Venegas-Andraca, S.E., Bose, S.: Quantum walk-based generation of entanglement between two walkers. arXiv:0901.3946
Goya S.K., Chandrashekar C.M.: Spatial entanglement using a quantum walk on a many-body system. J. Phys. A 43, 235303 (2010)
Franco C.D., McGettrick M.M., Busch Th.: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. L 106, 080502 (2011)
Zähringer F., Kirchmair G., Gerritsma R., Solano E., Blatt R., Roos C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. L 104, 100503 (2010)
Peruzzo A. et al.: Quantum walks of correlated photons. Science 329, 1500 (2010)
Ambainis, A.: Quantum walks and their algorithmic applications. quant-ph/0403120
Hein B., Tanner G.: Quantum search algorithms on a regular lattice. Phys. Rev. A 82, 012326 (2010)
Berry S.D., Wang J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)
Magniez, F., Santhaand, M., Szegedy, M.: Quantum algorithm for the triangle problem. quant-ph/0310134
Douglas B.L., Wang J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A 41, 075303 (2008)
Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. Prof. 21st ACM symposium on theory of computing, pp 33–43 (1989)
Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH Hash function. Lecture Notes in Computer Science, Vol. 6147 (2010)
Koshiba, T., Odaira, T.: Non-interactive statistically-hiding quantum bit commitment from any quantum one-way function. quant-ph/1102.3441
Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284(14) (2011)
Carneiro I., Loo M., Xu X., Girerd M., Kendon V., Knight P.L.: Entanglement in coined quantum walks on regular graphs. New J. Phys. 7, 156 (2005)
Stefanak M., Barnett S.M., Kollar B., Kiss T., Jex I.: Directional correlations in quantum walks with two particles. New J. Phys. 13, 033029 (2011)
Shenvi N., Kempe J., Whaley K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)
Tregenna B., Flanagan W., Maile R., Kendon V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, D., Zhang, J., Guo, FZ. et al. Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf Process 12, 1501–1513 (2013). https://doi.org/10.1007/s11128-012-0421-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-012-0421-8