Skip to main content
Log in

Discrete-time interacting quantum walks and quantum Hash schemes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Through introducing discrete-time quantum walks on the infinite line and on circles, we present a kind of two-particle interacting quantum walk which has two kinds of interactions. We investigate the characteristics of this kind of quantum walk and the time evolution of the two particles. Then we put forward a kind of quantum Hash scheme based on two-particle interacting quantum walks and discuss their feasibility and security. The security of this kind of quantum Hash scheme relies on the infinite possibilities of the initial state rather than the algorithmic complexity of hard problems, which will greatly enhance the security of the Hash schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kempe J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307 (2003)

    Article  ADS  Google Scholar 

  2. Santha, M.: Theory and Applications of Models of Computation. Lecture Notes in Computer Science, Vol. 4978, edited by Agrawal, M., Du, D., Duan, Z., Li, A. (Springer, Berlin, 2008), p. 31C46

  3. Shenvi N., Kempe J., Whaley K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  4. Hein B., Tanner G.: Quantum search algorithms on a regular lattice. Phys. Rev. A 82, 012326 (2010)

    Article  ADS  Google Scholar 

  5. Ambainis, A.: Quantum walk algorithm for element distinctness. quant-ph/0311001

  6. Omar Y., Paunković N., Sheridan L., Bose S.: Quantum walk on a line with two entangled particles. Phys. Rev. A 74, 042304 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. Pathak P.K., Agarwal G.S.: Quantum random walk of two photons in separable and entangled states. Phys. Rev. A 75, 032351 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. Berry S.D., Wang J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)

    Article  ADS  Google Scholar 

  9. Campari R., Cassi D.: Statistics of reciprocal distances for random walks of three particles in one dimension. Phys. Rev. E 83, 041107 (2011)

    Article  ADS  Google Scholar 

  10. Gamble J.K., Friesen M., Zhou D., Joynt R., Coppersmith S.N.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81, 052313 (2010)

    Article  ADS  Google Scholar 

  11. Venegas-Andraca, S.E., Bose, S.: Quantum walk-based generation of entanglement between two walkers. arXiv:0901.3946

  12. Goya S.K., Chandrashekar C.M.: Spatial entanglement using a quantum walk on a many-body system. J. Phys. A 43, 235303 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  13. Franco C.D., McGettrick M.M., Busch Th.: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. L 106, 080502 (2011)

    Article  Google Scholar 

  14. Zähringer F., Kirchmair G., Gerritsma R., Solano E., Blatt R., Roos C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. L 104, 100503 (2010)

    Article  Google Scholar 

  15. Peruzzo A. et al.: Quantum walks of correlated photons. Science 329, 1500 (2010)

    Article  ADS  Google Scholar 

  16. Ambainis, A.: Quantum walks and their algorithmic applications. quant-ph/0403120

  17. Hein B., Tanner G.: Quantum search algorithms on a regular lattice. Phys. Rev. A 82, 012326 (2010)

    Article  ADS  Google Scholar 

  18. Berry S.D., Wang J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)

    Article  ADS  Google Scholar 

  19. Magniez, F., Santhaand, M., Szegedy, M.: Quantum algorithm for the triangle problem. quant-ph/0310134

  20. Douglas B.L., Wang J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A 41, 075303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. Prof. 21st ACM symposium on theory of computing, pp 33–43 (1989)

  22. Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH Hash function. Lecture Notes in Computer Science, Vol. 6147 (2010)

  23. Koshiba, T., Odaira, T.: Non-interactive statistically-hiding quantum bit commitment from any quantum one-way function. quant-ph/1102.3441

  24. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284(14) (2011)

  25. Carneiro I., Loo M., Xu X., Girerd M., Kendon V., Knight P.L.: Entanglement in coined quantum walks on regular graphs. New J. Phys. 7, 156 (2005)

    Article  ADS  Google Scholar 

  26. Stefanak M., Barnett S.M., Kollar B., Kiss T., Jex I.: Directional correlations in quantum walks with two particles. New J. Phys. 13, 033029 (2011)

    Article  ADS  Google Scholar 

  27. Shenvi N., Kempe J., Whaley K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  28. Tregenna B., Flanagan W., Maile R., Kendon V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhang, J., Guo, FZ. et al. Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf Process 12, 1501–1513 (2013). https://doi.org/10.1007/s11128-012-0421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0421-8

Keywords

Navigation