Skip to main content
Log in

Bipartite coherent-state quantum key distribution with strong reference pulse

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an optical scheme for quantum key distribution in which bits are encoded in relative phases of four bipartite weak coherent states\({|\alpha, \alpha\rangle, |-\alpha, -\alpha\rangle, |-\alpha, \alpha\rangle}\) and \({|\alpha, -\alpha \rangle}\), with respect to a strong reference pulse. We discuss security of the scheme against eavesdropping strategies like, photon number splitting, photon beam splitting and intercept-resend attacks. It is found that present scheme is more sensitive against these eavesdropping strategies than the two-dimensional non-orthogonal state based protocol and BB84 protocol. Our scheme is very simple, requires only passive optical elements like beam splitters, phase shifters and photon detectors, hence is at the reach of presently available technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179. IEEE (1984)

  2. Scarani V., Iblisdir S., Gisin N.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Phoenix S.J.D.: Quantum cryptography without conjugate coding. Phys. Rev. A 48, 96 (1993)

    Article  ADS  Google Scholar 

  5. Mayers D.: Quantum key distribution and string oblivious transfer in noisy channels. In: Koblitz, N. (ed.) Proceedings of Advances in Cryptology-Crypto ‘96, Lecture Notes in Computer Science Vol 1109., pp. 343. Springer, Berlin (1996)

    Google Scholar 

  6. Biham, E., Boyer, M., Boykin, P. O., Mor, T., Roychowdhury, V.: A Proof of the Security of Quantum Key Distribution. http://www.arxiv.org/abs/quant-ph/9912053

  7. Lo H.K., Chare H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  8. Koashi M., Perskill J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)

    Article  ADS  Google Scholar 

  9. Christandl, M., Renner, R., Ekert, A.: A generic security proof for quantum key distribution. http://www.arxiv.org/abs/quantph/0402131

  10. Shor P.W., Perskill J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  11. Inamori H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. http://www.arxiv.org/abs/quant-ph/0107017

  12. Gottesman, D., Lo, H.K., Lutkenhaus, N., Perskill, J.: Security of quantum key distribution with imperfect devices. http://www.arxiv.org/abs/quant-ph/0212066

  13. Huttner B., Imoto N., Gisin N., Mor T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  14. Brassard G., Lütkenhaus N., Mor T., Sanders B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  15. Lütkenhaus N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  16. Hwang W.Y.: Quantum key distribution with high loss: global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  17. Wang X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  18. Wang X.B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72, 012322 (2005)

    Article  ADS  Google Scholar 

  19. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Koashi M.: Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93, 120501 (2004)

    Article  ADS  Google Scholar 

  22. Wu G., Chen J., Li Y., Xu L., Zeng H.: Preventing eavesdropping with bright reference pulses for a practical quantum key distribution. Phys. Rev. A 74, 062323 (2006)

    Article  ADS  Google Scholar 

  23. Ralph, T.: Continuous variable quantum cryptography. http://www.arxiv.org/abs/quant-ph/9907073

  24. Hillery M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000)

    Article  ADS  Google Scholar 

  25. Loudan R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)

    Google Scholar 

  26. Peres A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  27. Cover T.M., Thomas J.A.: Elements of Information theory. Wiley, Newyork (1991)

    Book  MATH  Google Scholar 

  28. Ash R.B.: Information Theory. Dover, Newyork (1990)

    MATH  Google Scholar 

  29. Ekert A.K., Huttner B., Palma G.M., Peres A.: Eavesdropping on quantum-cryptographical systems. Phys. Rev. A 50, 1047 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, M.K., Prakash, H. Bipartite coherent-state quantum key distribution with strong reference pulse. Quantum Inf Process 12, 907–920 (2013). https://doi.org/10.1007/s11128-012-0438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0438-z

Keywords

Navigation