Skip to main content
Log in

Hierarchical quantum information splitting with eight-qubit cluster states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the paper, a scheme is proposed for hierarchical quantum information splitting with an unknown eight-qubit cluster state. The Boss Alice wants to distribute a quantum secret to seven distant agents who are divided into two grades. Three agents are in the upper grade and four agents are in the lower grade. Every agent of the upper grade only needs the collaboration of three of the other six agents to get the secret, but all the agents of the lower grade need the collaboration of all the other six agents. In other words, different agents in different grades have different authorities to recover Boss’ secret. And the agent in upper grade is more powerful than the one in the lower grades which needs more information to recover the secret.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Karlsson A., Bourennane M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  4. Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  5. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. A 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  6. Nie Y.Y., Hong Z.H., Huang Y.B. et al.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48, 1485–1490 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang B.B., Liu Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys. 48, 2644–2651 (2009)

    Article  MATH  Google Scholar 

  8. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  9. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  10. Zheng S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)

    Article  ADS  Google Scholar 

  11. Paul N., Menon J.V., Karumanchi S., Muralidharan S., Panigrahi P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Muralidharan S., Jain S., Panigrahi P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2011)

    Article  ADS  Google Scholar 

  13. Cheung C.V., Zhang Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  14. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  15. Wiesner S.: Conjugate coding. SIGACT News 15, 78–88 (1983)

    Article  Google Scholar 

  16. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Proceedings of 47th Annual IEEE Symposium on the Foundations of Computer Science (FOCS06) IEEE Press, New York, pp. 249–260 (2006)

  17. Li Y.H., Liu J.C., Nie Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao Z., Chen Y.A., Zhang A.N., Yang T., Briegel H.J., Pan J.W.: Experimental demonstration of five-photon entanglement and open-destination quantum teleportation. Nature 430, 54 (2004)

    Article  ADS  Google Scholar 

  19. Wang X.W., Su Y.H., Yang G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang X.W., Zhang D.Y., Tang S.Q., Zhan X.G., You K.M.: Hierarchical quantum information splitting with six-Photon cluster states. Int. J. Theor. Phys. 49, 2691–2697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim Y.H., Kulik S.P., Shih Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  22. Walther P., Zeilinger A.: Experimental realization of a photonic Bell-state analyzer. Phys. Rev. A 72, 010302(R) (2005)

    Article  ADS  Google Scholar 

  23. Jin X.M., Ren J.G., Yang B., Yi Z.H., Zhou F., Xu X.F., Wang S.K., Yang D., Hu Y.F., Jiang S., Yang T., Yin H., Chen K., Peng C.Z., Pan J.W.: Experimental free-space quantum teleportation. Nat. Photon 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  24. Wootters W.K., Zurek W.H.: A single quantum cannot be cloned. Nature 239, 802 (1982)

    Article  ADS  Google Scholar 

  25. Deng F.G. et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Physics Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  26. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  27. Fang J.X., Lin Y. S., Zhu S.Q., Chen X.F.: Probabilistic teleportation of a three-particle state via three pairs of entangled particles. Phys. Rev. A 67, 014305 (2003)

    Article  ADS  Google Scholar 

  28. Gordon G., Rigolin G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  29. Zhan Y.B., Zhang Q.Y., Wang G.Y.W., Ma P.C.: Schemes for teleportation of an unknown single-qubit quantum state by using an arbitrary high-dimensional entangled state. Chin. Phys. Lett. 27(1), 010307 (2010)

    Article  ADS  Google Scholar 

  30. Yin X.F., Liu Y.M., Zhang W., Zhang Z.J.: Simplified four-qubit cluster state for splitting arbitrary single-qubit information. Commun. Theor. Phys. 53, 49–53 (2010)

    Article  ADS  MATH  Google Scholar 

  31. Nie Y.Y., Li Y.H., Lin J.C., Sang M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10, 603–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dong P., Xue Z.Y., Yang M., Cao Z.L.: Generation of cluster states. Phys. Rev. A 73(3), 033818 (2006)

    Article  ADS  Google Scholar 

  33. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. A 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  34. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  35. Schlingemann D., Werner R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  ADS  Google Scholar 

  36. Walther P. et al.: Experimental one-way quantum computing. Nature (London) 86, 434 (2005)

    Google Scholar 

  37. Gao W.B. et al.: Experimental demonstration of topological error correction. Nature 482, 489–494 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Qiang Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, MQ., Mo, ZW. Hierarchical quantum information splitting with eight-qubit cluster states. Quantum Inf Process 12, 1053–1064 (2013). https://doi.org/10.1007/s11128-012-0440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0440-5

Keywords

Navigation