Skip to main content
Log in

Direct implementation of an N-qubit controlled-unitary gate in a single step

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a new scheme to implement an N-qubit controlled-unitary operation directly in a single step. The main advantage of our scheme is that we do not use conventional gate decomposition protocols to break an N-qubit controlled-unitary gate into one- and two-qubit gates. This greatly reduces the number of computational steps in implementing quantum algorithms and error-correcting codes, which use multi-control unitary operations. We show how to find analytic solutions to the time evolution of the system, so that system parameters can be found to realize the desired N-qubit controlled-unitary operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LNN:

Linear nearest neighbor

CNOT:

Controlled-NOT

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  4. Steane A.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  6. Song G., Klappenecker A.: Optimal realizations of controlled unitary gates. Quantum Inf. Comput. 3, 139–155 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Möttoönen M., Vartiainen J.J., Bergholm V., Salomaa M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93, 130502 (2004)

    Article  Google Scholar 

  8. Bergholm V., Vartiainen J.J., Möttoönen M., Salomaa M.M.: Quantum circuits with uniformly controlled one-qubit gates. Phys. Rev. A 71, 052330 (2005)

    Article  ADS  Google Scholar 

  9. Vatan F., Williams C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69, 032315 (2004)

    Article  ADS  Google Scholar 

  10. Shende V.V., Markov I.L., Bullock S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69, 062321 (2004)

    Article  ADS  Google Scholar 

  11. Bullock S.S., Markov I.L.: Arbitrary two-qubit computation in 23 elementary gates. Phys. Rev. A 68, 012318 (2003)

    Article  ADS  Google Scholar 

  12. Zhang J., Vala J., Sastry S., Whaley K.B.: Minimum construction of two-qubit quantum operations. Phys. Rev. Lett. 93, 020502 (2004)

    Article  ADS  Google Scholar 

  13. Yang C.P., Han S.: n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys. Rev. A 72, 032311 (2005)

    Article  ADS  Google Scholar 

  14. Yang C.P., Han S.: Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED. Phys. Rev. A 73, 032317 (2006)

    Article  ADS  Google Scholar 

  15. Goto H., Ichimura K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004)

    Article  ADS  Google Scholar 

  16. Niskanen A., Vartiainen J.J., Salomaa M.M.: Optimal multiqubit operations for Josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2003)

    Article  ADS  Google Scholar 

  17. Zou X., Li K., Guo G.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305 (2007)

    Article  ADS  Google Scholar 

  18. Guerin S., Lacaor X., Sangouard N., Jauslin H.R.: Arbitrary state controlled-unitary gate by adiabatic passage. Phys. Rev. A 73, 042321 (2006)

    Article  ADS  Google Scholar 

  19. Xue P., Xiao Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006)

    Article  ADS  Google Scholar 

  20. Xiao Y.F., Zuo X.B., Guo G.C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)

    Article  ADS  Google Scholar 

  21. Makhlin Y., Schon G., Shnirman A.: Josephson-junction qubits with controlled couplings. Nature 398, 305–309 (1999)

    Article  ADS  Google Scholar 

  22. Yang W.-L., Wei H., Chen C.: Scheme for N-qubit Toffoli gate by transport of trapped ultracold ions. Commun. Theor. Phys. 50(5), 1117–1122 (2008)

    Article  ADS  Google Scholar 

  23. Yang C.: A scheme for realizing n-qubit controlled-phase gates with atoms in cavity QED. Phys. Lett. A 372, 2782–2786 (2008)

    Article  ADS  MATH  Google Scholar 

  24. Tang Y.-X., Lin X.-M., Lin G.-W., Chen L.-B., Huang X.-H.: Direct implementation of a scalable non-local multi-qubit controlled phase gate via optical fibres and adiabatic passage. Chin. Phys. B 17(12), 4388 (2008)

    Article  ADS  Google Scholar 

  25. Harris R., Brito F., Berkley A.J., Johansson J., Johnson M.W., Lanting T., Bunyk P., Ladizinsky E., Bumble B., Fung A., Kaul A., Kleinsasser A., Han S.: Synchronization of multiple coupled rf-SQUID flux qubits. New J. Phys. 11, 123022 (2009)

    Article  ADS  Google Scholar 

  26. Grajcar M., Izmalkov A., van der Ploeg S.H.W., Linzen S., Plecenik T., Wagner T., Hübner U., Il’ichev E., Meyer H.-G., Smirnov A.Y., Love P.J., van den Brink A.M., Amin M.H.S., Uchaikin S., Zagoskin A.M.: Four-qubit device with mixed couplings. Phys. Rev. Lett. 96, 047006 (2006)

    Article  ADS  Google Scholar 

  27. Zhou X., Zhou Z., Guo G., Feldman M.J.: Quantum computing with un-tunable couplings. Phys. Rev. Lett. 89, 197903–197906 (2002)

    Article  ADS  Google Scholar 

  28. Benjamin S.C., Bose S.: Quantum computing with an ‘always-on’ Heisenberg interaction. Phys. Rev. Lett. 90, 247901–247904 (2003)

    Article  ADS  Google Scholar 

  29. Kumar P., Skinner S.R.: Simplified approach to implementing controlled-unitary operations in a two-qubit system. Phys. Rev. A 76, 022335 (2007)

    Article  ADS  Google Scholar 

  30. Novais E., Castro Neto A.H.: Nuclear spin qubits in a pseudospin quantum chain. Phys. Rev. A 69, 062312 (2004)

    Article  ADS  Google Scholar 

  31. van der Ploeg S.H.W., Izmalkov A., van den Brink A.M., Hübner U., Grajcar M., Il’ichev E., Meyer H.-G., Zagoskin A.M.: Controllable coupling of superconducting flux qubits. Phys. Rev. Lett. 98, 057004 (2007)

    Article  ADS  Google Scholar 

  32. Stinaff E.A., Scheibner M., Bracker A.S., Ponomarev I.V., Korenev V.L., Ware M.E., Doty M.F., Reinecke T.L., Gammon D.: Optical signatures of coupled quantum dots. Science 311, 636–639 (2006)

    Article  ADS  Google Scholar 

  33. Niskanen A.O., Harrabi K., Yoshihara F., Nakamura Y., Lloyd S., Tsai J.S.: Quantum coherent tunable coupling of superconducting qubits. Science 316, 723–726 (2007)

    Article  ADS  Google Scholar 

  34. Groszkowski P., Fowler A.G., Motzoi F., Wilhelm F.K.: Tunable coupling between three qubits as a building block for a superconducting quantum computer. Phys. Rev. B 84, 144516–144522 (2011)

    Article  ADS  Google Scholar 

  35. Kumar P., Skinner S.R.: Universal quantum computing in linear nearest neighbor architectures. Quantum Inf. Comput. 11, 0300–0312 (2011)

    MathSciNet  Google Scholar 

  36. Harris R., Berkley A.J., Johnson M.W., Bunyk P., Govorkov S., Thom M.C., Uchaikin S., Wilson A.B., Chung J., Holtham E., Biamonte J.D., Yu. Smirnov A., Amin M.H.S., van den Brink A.M.: Sign- and magnitude-tunable coupler for superconducting flux qubits. Phys. Rev. Lett. 98, 177001–177004 (2007)

    Article  ADS  Google Scholar 

  37. Harris R., Lanting T., Berkley A.J., Johansson J., Johnson M.W., Bunyk P., Ladizinsky E., Ladizinsky N., Oh T., Han S.: Compound Josephson-junction coupler for flux qubits with minimal crosstalk. Phys. Rev. B 80, 052506 (2009)

    Article  ADS  Google Scholar 

  38. Niskanen A.O., Harrabi K., Yoshihara F., Nakamura N., Tsai J.S.: Spectroscopy of three strongly coupled flux qubits. Phys. Rev. B 74, 220503 (2006)

    Article  ADS  Google Scholar 

  39. Fedorov A., Macha P., Feofanov A.K., Harmans C.J.P.M., Mooij J.E.: Tuned transition from quantum to classical for macroscopic quantum states. Phys. Rev. Lett. 106, 170404 (2011)

    Article  ADS  Google Scholar 

  40. Zhang J., Whaley K.B.: Generation of quantum logic operations from physical Hamiltonians. Phys. Rev. A 71, 052317–052329 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  41. Skinner A.J., Davenport M.E., Kane B.E.: Hydrogenic spin quantum computing in silicon: a digital approach. Phys. Rev. Lett. 90, 087901 (2003)

    Article  ADS  Google Scholar 

  42. Pachos J.K., Knight P.L.: Quantum computation with a one-dimensional optical lattice. Phys. Rev. Lett. 91, 087901 (2003)

    Article  Google Scholar 

  43. Hollenberg L.C.L., Dzurak A.S., Wellard C., Hamilton A.R., Reilly D.J., Milburn G.J., Clark R.G.: Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004)

    Article  ADS  Google Scholar 

  44. Ionicioui R.: Entangling spins by measuring charge: A parity-gate toolbox. Phys. Rev. A 75, 032339 (2007)

    Article  ADS  Google Scholar 

  45. Ibrahim W., Beiu V., Sulieman M.H.: On the reliability of majority gates full adders. IEEE Trans. Nanotech. 7(1), 56–67 (2008)

    Article  ADS  Google Scholar 

  46. Cirac J.J., Zoller P.: A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  Google Scholar 

  47. Lidar D.A., Chuang I.L., Whaley K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  48. Biercuk M.J., Uys H., VanDevender A.P., Shiga N., Itano W.M., Bollinger J.J.: Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)

    Article  ADS  Google Scholar 

  49. Kumar, P., Skinner, S.R., Daraeizadeh, S.: A nearest neighbor quantum architecture to overcome dephasing. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0365-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethika Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P. Direct implementation of an N-qubit controlled-unitary gate in a single step. Quantum Inf Process 12, 1201–1223 (2013). https://doi.org/10.1007/s11128-012-0465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0465-9

Keywords

Navigation