Abstract
A theoretical investigation of quantum interference of photonic multistates in simple devices like beam splitters, Mach–Zehnder interferometers and double-loop devices are presented. Variable transmission and reflection coefficients as well as variable phase shifts are included in order to calculate quantum states and mean photon numbers at the outputs. Various input states like Fock states and coherent states and a combination of both are considered as well as squeezed states. Two methods are applied: The direct matrix method and the method of unitary representation. Remarkable results appear in a double-loop interferometer where for special phase shifts equal mean photon numbers in the three output ports are obtained provided certain input states are given. A computerized simulation of general networks using various input Fock states is presented. Multistate devices will be used in future linear quantum computation and quantum information processing schemes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Knill E., Laflamme R., Milburn G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)
Ralph T.C., White A.G., Munro W.J., Milburn G.J.: Simple scheme for efficient linear optics quantum gates. Phys. Rev. A 65, 012314–1 (2001)
O’Brien, J.L.: Optical quantum computing. Science 318, 1567–1570 arXiv:0803.1554 (2007)
Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silica-on silicon waveguide quantum circuits. Science 320, 646 (2008) arXiv:0802.0136
Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)
Ralph, T.C., Pryde, G.J.: Quantum optical computation. pp. 1–70 (2011) arXiv:1103.6071
Skaar J., Escartín J.C.G., Landro H.: Quantum mechanical description of linear optics. Am. J. Phys. 72, 1385 (2004)
Gerry C.C., Knight P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)
Schleich W.P.: Quantum Optics in Phase Space. Wiley, Berlin (2001)
Loudon R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)
Reck M., Zeilinger A.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)
Reck, M., Zeilinger, A.: Quantum phase tracing of correlated photons in optical multiports. In: DeMartini, F., Denardo, G., Zeilinger, A. (eds) Proceedings of the Adriatico Workshop on Quantum Interferometry (pp. 171–178). World Scientific, Singapore (1993)
Weihs G., Reck M., Weinfurter H., Zeilinger A.: Two-photon interference in optical fiber multiports. Phys. Rev. A 54, 893 (1996)
Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)
Kim M.S., Son W., Bužek V., Knight P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)
Stokes G.G.: On attractions and on Clairaut’s theorem. Camb. Dublin Math. J. 4, 1 (1849)
Holbrow C.H., Galvez E., Parks M.E.: Photon quantum mechanics and beam splitters. Am. J. Phys. 70, 260 (2002)
Jauch J.M., Rohrlich F.: The Theory of Photons and Electrons. Springer, Berlin (1976)
Biedenharn L.C., Louck J.D.: Angular Momentum in Quantum Physics. Addison-Wesley, USA (1981)
Leonhardt U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)
Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)
Windhager, A., Suda, M., Pacher, C., Peev, M.,Poppe, A.: Quantum interference between a single- photon Fock state and a coherent state. Opt. Commun. 284, 1907–1912 (2011) arXiv:1009.1844
Hendrych M., Dušek M., Haderka O.: The effect of beam-splitter imperfections and losses on fringe visibility in a Mach–Zehnder interferometer. Acta Physica Slovaka 46, 393 (1996)
Paris, M.G.A.: Entanglement and visibility at the output of a Mach-Zehnder interferometer. Phys. Rev. A 59, 1615–1621 (1999) quant-ph/9811078
Paris, M.G.A.: Optical qubit by conditional interferometry. Phys. Rev. A 62, 033813 1–8 (2000) quant-ph/9909075
Soubusta J., Bartůšková L., Černoch A., Fiurášek J., Dušek M.: Several experimental realizations of symmetric phase-covariant quantum cloners of single-photon qubits. Phys. Rev. A 76, 042318–1 (2007)
Hradil Z., Dušek M.: Analogy between optimal spin estimation and interferometry. Opt. Commun. 182, 361 (2000)
Walls D.F.: Squeezed states of light. Nature 306, 141 (1983)
Paris M.G.A.: Joint generation of identical squeezed states. Phys. Lett. A 225, 28 (1997)
Hillery M.: An introduction to the quantum theory of nonlinear optics. Acta Phys. Slov. 59, 1 (2009)
Andreoni A., Bondani M., D’Ariano G.M., Paris M.G.A.: Dichromatic squeezing generation. Eur. Phys. J. D 13, 415 (2001)
Paris M.G.A., Chizhov A.V., Steuernagel O.: Phase space distributions from three-port couplers. Opt. Commun. 134, 117 (1997)
Duer W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Simon, D.S., Sergienko, A.V., Bahder, T.B.: Dispersion and fidelity in quantum interferometry. Phys. Rev. A 78, 053829 1–12 (2008) arXiv:0810.4501
Bartůšková L., Černoch A., Filip R., Fiuráśek J., Soubusta J., Dušek M.: Optical implementation of the encoding of two qubits to a single qutrit. Phys. Rev. A 74, 022325 (2006)
Miková M., Fikerová H., Straka I., Mičuda M., Fiurášek J., Ježek M., Dušek M.: Increasing efficiency of a linear-optical quantum gate using electronic feed-forward. Phys. Rev. A 85, 012305 (2012)
Hübel H., Hamel D.R., Fedrizzi A., Ramelow S., Resch K.J., Jennewein T.: Direct generation of photon triplets using cascaded photon-pair sources. Nature 466, 601 (2010)
Weihs G., Reck M., Weinfurter H., Zeilinger A.: All-fiber three-path Mach-Zehnder interferometer. Opt. Lett. 21, 302 (1996)
Bartůšková L., Černoch A., Soubusta J., Dušek M.: Programmable discriminator of coherent states: experimantal realization. Phys. Rev. A 77, 034306–1 (2008)
Reinsch, M.W.: A simple expression for the terms in the Baker–Campbell–Hausdorff series. pp. 1–12 (1999) arXiv:math-ph/9905012
Dakna M., Knöll L., Welsch D.-G.: Photon-added state preparation via conditional measurement on a beam splitter. Opt. Commun. 145, 309 (1998)
Zavatta A., Viciani S., Bellini M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)
Zavatta A., Parigi V., King M.S., Bellini M.: Subtracting photons from arbitrary light fields: experimental test of coherent state invariance by single-photon annihilation. New J. Phys. 10, 123006 (2008)
Lee S.-Y., Nha H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)
Gerrits T., Glancy S., Clement T.S., Calkins B., Lita A.E., Miller A.J., Migdal A.L., Nam S.W., Mirin R.P., Knill E.: Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum. Phys. Rev. A 82, 031802 (2010)
Xiang G.Y., Ralph T.C., Lund A.P., Walk N., Pryde G.J.: Noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)
Zavatta A., Fiurášek J., Bellini M.: A high-fidelity noisless amplifier for quantum light states. Nat. Photonics 5, 52 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Suda, M., Pacher, C., Peev, M. et al. Quantum interference of photons in simple networks. Quantum Inf Process 12, 1915–1945 (2013). https://doi.org/10.1007/s11128-012-0479-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-012-0479-3