Skip to main content
Log in

Faithful quantum broadcast beyond the no-go theorem

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The main superiority of the quantum remote preparation over quantum teleportation lies the classical resource saving. This situation may be changed from the following constructions. Our purpose in this paper is to find some special differences between these two quantum tasks besides the classical resource costs. Some novel schemes show that the first one is useful to simultaneously broadcast arbitrary quantum states, while the second one cannot because of the quantum no-cloning theorem. Moreover, these broadcast schemes may be adapted to satisfying the different receivers’ requirements or distributing the classical information, which are important in various quantum applications such as the quantum secret distribution or the quantum network communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Cirac J.I., Zoller P., Kimble H.J., Mabuchi H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  3. Lo H.K.: Continuous-variable teleportation of single-photon states. Phys. Rev. A 65, 012313 (2000)

    Article  ADS  Google Scholar 

  4. Bennett C.H., DiVincenzo D.P., Shor P.W., Smolin J.A., Terhal B.M., Wootters W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  5. Braunstein S.L., Kimble H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)

    Article  ADS  Google Scholar 

  6. van Loock P., Braunstein S.L.: Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000)

    Article  ADS  Google Scholar 

  7. Luo M.X., Chen X.B., Ma S.Y., Yang Y.X., Hu Z.M.: Deterministic remote preparation of an arbitrary W-class state with multiparty. J. Phys. B: At. Mol. Opt. Phys. 43, 065501 (2010)

    Article  ADS  Google Scholar 

  8. Berry D.W., Sanders B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 027901 (2003)

    Article  ADS  Google Scholar 

  9. Luo, M.X., Deng, Y., Chen, X.B., Yang, Y.X.: The faithful remote preparation of general quantum states. In: Quantum infor. Proceedings. (2012). doi:10.1007/s11128-012-0374-y

  10. Leung D.W., Shor P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  11. Ye M.Y., Zhang Y.S., Guo G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  12. Paris M.G.A., Cola M., Bonifacio R.: Remote state preparation and teleportation in phase space. J. Opt. B: Quantum Semiclass. Opt. 5, 360 (2003)

    Article  ADS  Google Scholar 

  13. Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  14. Furusawa A., Sorensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  15. Riebe, M., Haffner, H., Roos, C.F., Hansel, W., Benhelm, J., Lancaster, G.P.T., Korber, T. W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734–73 (2004)

    Google Scholar 

  16. Peng X., Zhu X., Fang X., Feng M., Liu M., Gao K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  17. Xiang G.Y., Li J., Bo Y., Guo G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  18. Zeng B., Zhang P.: Remote-state preparation in higher dimension and the parallelizable manifold S n-1. Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  19. Shende V., Bullock S., Markov I.: Synthesis of quantum-logic circuits. IEEE Trans. Computer-Aided Design 25, 1000–1010 (2006)

    Article  Google Scholar 

  20. Plesch M., Brukner Č.: Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011)

    Article  ADS  Google Scholar 

  21. Luo, M.X.: Some quantum states prepared with polynomial quantum circuits, International J. Theor. Phys. (2012). doi:10.1007/s10773-012-1257-9

  22. Cartan : Sur certaines formes riemanniennes remarquables des geometriesa groupe fondamental simple. Ann. Sci. Ec. Normale Super. 44, 345 (1927)

    MATH  MathSciNet  Google Scholar 

  23. Khaneja N., Glaser S.: Cartan decomposition of SU (2n) and control of spin systems. Chem. Phys. 267, 11–23 (2001)

    Article  ADS  Google Scholar 

  24. Luo M.X., Chen X.B., Yang Y.X., Niu X.X.: Experiment architecture of joint remote state preparation. Quantum Infor. Proc. 11, 751–767 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yuen H.P.: Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113, 405–407 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  26. Barnum H., Caves C.M., Fuchs C.A., Jozsa R., Schumacher B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  27. Pati A.K.: Quantum superposition of multiple clones and the novel cloning machine. Phys. Rev. Lett. 83, 2849–2852 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Barnum H., Barrett J., Leifer M., Wilce A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)

    Article  ADS  Google Scholar 

  29. Piani M., Horodecki P., Horodecki R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  30. Luo S., Sun W.: Decomposition of bipartite states with applications to quantum no-broadcasting theorems. Phys. Rev. A 82, 012338 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Heng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, MX., Deng, Y., Chen, XB. et al. Faithful quantum broadcast beyond the no-go theorem. Quantum Inf Process 12, 1969–1979 (2013). https://doi.org/10.1007/s11128-012-0486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0486-4

Keywords

Navigation