Abstract
By using the tripartite negativity as entanglement measure, we study the tripartite entanglement of electron spins of noninteracting electron gases. Our results imply that the tripartite entanglement depends on the relative distance between the three spins and the temperature. By a comparison between the tripartite negativity and quantum mutual information, for the symmetrical configuration that the relative distances between each pair of the three spins are the same, the quantum mutual information lasts a longer relative distance than the tripartite negativity does. While for the unsymmetrical configuration, the analysis imply that the tripartite negativity just measures the tripartite correlation while the quantum mutual information maybe takes the bipartite correlation into account.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)
Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Gisin G., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Zyczkowski K., Horodecki P., Sanpera A., Lewenstein M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)
Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Meyer D., Wallach N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273 (2002)
Brennen G.K.: An observable measure of entanglement for pure states of multi-qubit systems. Quantum Inform. Comput. 3, 619 (2003)
Pan F., Liu D., Lu G., Draayer J.P.: Simple entanglement measure for multipartite pure states. Int. J. Theor. Phys. 43, 1241 (2004)
Yu C.S., Song H.S.: Free entanglement measure of multiparticle quantum states. Phys. Lett. A 330, 377 (2004)
Sabin C., Garcia-Alcaine G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)
Dur W., Cirac J.I., Tarrach R.: Separability and distillability of multiparticle quantum systems. Phys. Rev. Lett. 83, 3562 (1999)
Akhtarshenas S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A 38, 6777 (2005)
Arnesen M.C., Bose S., Vedral V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)
Wang X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)
Vidal G., Latorre J.I., Rico E., Kitaev A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)
Garcia-Calderon G., Mendoza-Luna L.G.: Time evolution of decay of two identical quantum particles. Phys. Rev. A 84, 032106 (2011)
Regnault N., Bernevig B.A.: Fractional chern insulator. Phys. Rev. X 1, 021014 (2011)
Buscemi F., Bordone P.: Measure of tripartite entanglement in bosonic and fermionic systems. Phys. Rev. A 84, 022303 (2011)
Goerbig M.O.: Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193 (2011)
Apalkov V.M., Chakraborty T.: Interacting Dirac fermions on a topological insulator in a magnetic field. Phys. Rev. Lett. 107, 186801 (2011)
Papic Z., Thomale R., Abanin D.A.: Tunable electron interactions and fractional quantum hall states in graphene. Phys. Rev. Lett. 107, 176602 (2011)
Vedral V.: Entanglement in the second quantization formalism. Central Eur. J. Phys. 1, 289 (2003)
Oh S., Kim J.: Entanglement of electron spins of noninteracting electron gases. Phys. Rev. A 69, 054305 (2004)
Lunkes C., Brukner C., Vedral V.: Natural multiparticle entanglement in a Fermi gas. Phys. Rev. Lett. 95, 050305 (2005)
Kos S., Balatsky A.V., Littlewood P.B., Smith D.L.: Spin noise of itinerant fermions. Phys. Rev. B 81, 064407 (2010)
Mahan G.D.: Many-Particle Physics. Plenum Press, New York (1990)
Vedral V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)
Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, X.S., Qiao, Y., Zhao, G.X. et al. Tripartite entanglement of electron spins of noninteracting electron gases. Quantum Inf Process 12, 1807–1818 (2013). https://doi.org/10.1007/s11128-012-0495-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-012-0495-3