Skip to main content

Advertisement

Log in

Tripartite entanglement of electron spins of noninteracting electron gases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By using the tripartite negativity as entanglement measure, we study the tripartite entanglement of electron spins of noninteracting electron gases. Our results imply that the tripartite entanglement depends on the relative distance between the three spins and the temperature. By a comparison between the tripartite negativity and quantum mutual information, for the symmetrical configuration that the relative distances between each pair of the three spins are the same, the quantum mutual information lasts a longer relative distance than the tripartite negativity does. While for the unsymmetrical configuration, the analysis imply that the tripartite negativity just measures the tripartite correlation while the quantum mutual information maybe takes the bipartite correlation into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  5. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Gisin G., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  7. Zyczkowski K., Horodecki P., Sanpera A., Lewenstein M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  8. Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  9. Meyer D., Wallach N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Brennen G.K.: An observable measure of entanglement for pure states of multi-qubit systems. Quantum Inform. Comput. 3, 619 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Pan F., Liu D., Lu G., Draayer J.P.: Simple entanglement measure for multipartite pure states. Int. J. Theor. Phys. 43, 1241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu C.S., Song H.S.: Free entanglement measure of multiparticle quantum states. Phys. Lett. A 330, 377 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Sabin C., Garcia-Alcaine G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Dur W., Cirac J.I., Tarrach R.: Separability and distillability of multiparticle quantum systems. Phys. Rev. Lett. 83, 3562 (1999)

    Article  ADS  Google Scholar 

  15. Akhtarshenas S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A 38, 6777 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Arnesen M.C., Bose S., Vedral V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  17. Wang X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  18. Vidal G., Latorre J.I., Rico E., Kitaev A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  19. Garcia-Calderon G., Mendoza-Luna L.G.: Time evolution of decay of two identical quantum particles. Phys. Rev. A 84, 032106 (2011)

    Article  ADS  Google Scholar 

  20. Regnault N., Bernevig B.A.: Fractional chern insulator. Phys. Rev. X 1, 021014 (2011)

    Article  Google Scholar 

  21. Buscemi F., Bordone P.: Measure of tripartite entanglement in bosonic and fermionic systems. Phys. Rev. A 84, 022303 (2011)

    Article  ADS  Google Scholar 

  22. Goerbig M.O.: Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193 (2011)

    Article  ADS  Google Scholar 

  23. Apalkov V.M., Chakraborty T.: Interacting Dirac fermions on a topological insulator in a magnetic field. Phys. Rev. Lett. 107, 186801 (2011)

    Article  ADS  Google Scholar 

  24. Papic Z., Thomale R., Abanin D.A.: Tunable electron interactions and fractional quantum hall states in graphene. Phys. Rev. Lett. 107, 176602 (2011)

    Article  ADS  Google Scholar 

  25. Vedral V.: Entanglement in the second quantization formalism. Central Eur. J. Phys. 1, 289 (2003)

    Article  ADS  Google Scholar 

  26. Oh S., Kim J.: Entanglement of electron spins of noninteracting electron gases. Phys. Rev. A 69, 054305 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  27. Lunkes C., Brukner C., Vedral V.: Natural multiparticle entanglement in a Fermi gas. Phys. Rev. Lett. 95, 050305 (2005)

    Article  Google Scholar 

  28. Kos S., Balatsky A.V., Littlewood P.B., Smith D.L.: Spin noise of itinerant fermions. Phys. Rev. B 81, 064407 (2010)

    Article  ADS  Google Scholar 

  29. Mahan G.D.: Many-Particle Physics. Plenum Press, New York (1990)

    Book  Google Scholar 

  30. Vedral V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao San Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X.S., Qiao, Y., Zhao, G.X. et al. Tripartite entanglement of electron spins of noninteracting electron gases. Quantum Inf Process 12, 1807–1818 (2013). https://doi.org/10.1007/s11128-012-0495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0495-3

Keywords

Navigation