Abstract
In this paper, we propose a quantum private comparison scheme which can be used in decoherence noise scenario. With the combination of decoherence-free states and error-correcting code, it achieves a fault tolerant quantum private comparison to prevent collective decoherence noise and limited other decoherence noise. And the third party used in the protocol is not needed to be semi-honest.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
In an ideal scenario, Calvin can obtain the comparison result with \(K_C\) if Alice and Bob use their private information \(M_A\) and \(M_B\) to replace \(K_A\) and \(K_B\), respectively. However, in the presented protocol, some bits in \(K^*_A\) and \(K^*_B\) (which \(K_A\) and \(K_B\) come form) are used randomly to detect cheats which happen in non-ideal scenario. So Alice and Bob do not know which bits in \(K^*_A\) and \(K^*_B\) will become \(K_A\) and \(K_B\) ultimately. Consequently, they cannot use their private information to replace \(K_A\) and \(K_B\).
References
Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India, IEEE press, New York (1984)
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)
Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard protocol against collective noise. Phys. Rev. A 80, 032321 (2009)
Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)
Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10(5), 589–602 (2011)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)
Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)
Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A. 65–68, 373 (2008)
Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10(5), 603–608 (2011)
Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5–6), 0434–0443 (2011)
Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)
Massound, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China-Phys. Mech. Astron. 55(10), 1828–1831 (2012)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, Wy: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)
Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)
Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. 10(3), 317–323 (2011)
Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)
Chen, X.B., Wen, Q.Y., Zhu, F.C.: Quantum circuits for probabilistic entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717–728 (2007)
Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)
Jiang, M., Li, H., Zhang, Z.K., Zeng, J.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quantum Inf. Process. 11(1), 23–40 (2012)
Yao, A.C.: Protocols for secure Computation. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Washington, DC (1982)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York, NY (1987)
Mayers, D.: Unconditional secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)
Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)
Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Lecture Notes in Computer Science, vol. 4622, pp. 572–590. Springer-Verlag, Berlin/Heidelberg (2007)
Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282(16), 3382–3385 (2009)
Wang, C., Hao, L., Zhao, L.J.: Implementation of quantum private queries using nuclear magnetic resonance. Chin. Phys. Lett. 28(8), 080302 (2011)
Li, Y.B., Wen, Q.Y., Qin, S.: Improved secure multiparty computation with a dishonest majority via quantum means. Int. J. Theor. Phys. doi:10.1007/s10773-012-1319-z (2012)
Wang, T.Y., Wen, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)
Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)
Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Physica Scripta 80, 065002 (2009)
Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)
Lin, J., Tseng, H.Y., Hwang, T.: InterceptCresend attacks on Chen et al’.s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2412–2414 (2011)
Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)
Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)
Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)
Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110 (2012)
Liu, W., Wang, Y.B., Tao, J.Z., Cao, Y.Z.: A protocol for the quantum private comparison of equality with-type state. Int. J. Theor. Phys. 51, 69–77 (2012)
Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)
Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0433-4
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Mathematical Lib, North-Holland (1977)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)
Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)
Steane, A.M.: Error Correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)
Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)
Chen, T.Y., Zhang, J., Boileau, J.C., Jin, X.M., Yang, B., Zhang, Q., Yang, T., Laflamme, R., Pan, J.W.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006)
Lidar, D.A., Chuang, Il, Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)
Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Protecting quantum information encoded in decoherence-free states against exchange errors. Phys. Rev. A 61, 052307 (2000)
Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A. 63, 042307 (2001)
Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)
Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75, 020301 (2007)
Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)
Ji, C.H., Yee, Y., Choi, J., Kim, S.H., Bu, J.U.: Electromagnetic 2\(\times \)2 MEMS optical switch. IEEE J. Sel. Top. Quantum Electron. 10, 345 (2004)
Gao, F., Qin, S., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329C334 (2007)
Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)
Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: quantum exam. Phys. Lett. A 360, 748–750 (2007) [Phys. Lett. A 350, 174 (2006)]
Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192–195 (2010)
Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)
Song, T.T., Zhang, J., Gao, F., Wen, Q.Y., Zhu, F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)
Guo, F.Z., Qin, S.J., Gao, F., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)
Lin, S., Gao, F., Guo, F.Z., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)
Li, Y.B., Wen, Q.Y., Qin, S.: Comment on secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 84, 016301 (2011)
Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
Acknowledgments
This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061, and 61103210), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, and 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01), and Key Laboratory Funds of BESTI (Grant No.YQNJ0903).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, YB., Qin, SJ., Yuan, Z. et al. Quantum private comparison against decoherence noise. Quantum Inf Process 12, 2191–2205 (2013). https://doi.org/10.1007/s11128-012-0517-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-012-0517-1