Abstract
We investigate the XXZ model’s characteristic with the twisted boundary condition and the topological basis expression. Owing to twist boundary condition, the ground state energy will changing back and forth between \(E_{13}\) and \(E_{15}\) by modulate the parameter \(\phi \). By using TLA generators, the XXZ model’s Hamiltonian can be constructed. All the eigenstates can be expressed by topological basis, and the whole of eigenstates’ entanglement are maximally entangle states (\(Q(|\phi _i\rangle )=1\)).


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)
Hu, S.W., Xue, K., Ge, M.L.: Optical simulation of the Yang-Baxter equation. Phys. Rev. A 78, 022319 (2008)
Ardonne, E., Schoutens, K.: Wavefunctions for topological quantum registers. Ann. Phys. 322, 201–235 (2007)
Feiguin, A., Trebst, S., Ludwig, A.W.W., Troyer, M., Kitaev, A., Wang, Z.H., Freedman, M.H.: Interacting anyons in topological quantum liquids: the golden chain. Phys. Rev. Lett. 98, 160409 (2007)
Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)
Hikami, K.: Skein theory and topological quantum registers: braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states. Ann. Phys. 323, 1729–1769 (2008)
Jones, V.F.R.: A polynomial invariant for links via von Neumann algebras. Bull. Am. Math. Soc. 129, 103–112 (1985)
Wadati, M., Deguchi, T., Akutsu, Y.: Exactly solvable models and knot theory. Phys. Rep. 180, 247–332 (1989)
Kauffman, L.H.: An invariant of regular isotopy. Trans. Am. Math. Soc. 318(2), 417–471 (1990)
Abramsky, S.: Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics. arX-iv:0910.2737 (2009)
Temperley, H.N.V., Lieb, E.H.: Relations between the ‘Percolation’ and ‘Colouring’ Problem and other Graph-Theoretical Problems Associated with Regular Planar Lattices: Some Exact Results for the ‘Percolation’ Problem. Proc. Roy. Soc. Lond. A 322, 251–280 (1971)
Levy, D.: Structure of Temperley-Lieb algebras and its application to 2D statistical models. Phys. Rev. Lett. 64, 499–502 (1990)
Rui, H., Xi, C.: The representation theory of cyclotomic Temperley-Lieb algebras. Commentar. Math. Helv. 79, 427–450 (2004)
Baxter, R.J.: The inversion relation method for some two-dimensional exactly solved models in lattice statistics J. Stat. Phys. 28, 1 (1982)
Jimbo, M.: A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)
Kassel, C.: Quantum groups. Springer, Berlin (1995)
Martin, P.P.: Potts models and related problems in statistical mechanics. World Scientific, Singapore (1991)
Baxter, R.J.: Exactly solved models in statistical mechanics (Chap. 12). Academic Press, New York (1982)
Kauffman, L.H.: Knots and physics. World Scientific, Singapore (1991)
Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras, vol. 14. Math Sci Research Inst Publications, Springer, NewYork (1989)
Savit, R.: Duality in field theory and statistical systems. Rev. Mod. Phys. 52, 453–487 (1980)
Alvarez, M., Martin, P.P.: A Temperley-Lieb category for 2-manifolds. arXiv:0711.4777v1 [math-ph]
Sun, C.F., Wang, G.C., Hu, T.T., Zhou, C.C., Wang, Q.Y., Xue, K.: The representations of Temperley-Lieb algebra and entanglement in a Yang-Baxter system. Int. J. Quantum Inf. 7, 1285–1293 (2009)
Wang, G.C., Xue, K., Sun, C.F., Hu, T.T.,Zhou, C.C., Du, G.J.: Quantum tunneling effect and quantum Zeno effect in a Topological system. arXiv:1012.1474v2
Sutherland, B., Shastry, B.S.: Adiabatic transport properties of an exactly soluble one-dimensional quantum many-body problem. Phys. Rev. Lett. 65, 1833–1837 (1990)
Korepin, V.E., Wu, A.C.T.: Adiabatic transport properties and Berry’s phase in Heisenberg-Ising ring. Int. J. Mod. Phys. B 5, 497–507 (1991)
Beyers, N., Yang, C.N.: Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 7, 46–49 (1961)
Fath, G., Solyom, J.: Isotropic spin-1 chain with twisted boundary condition. Phys. Rev. B 47, 872–881 (1993)
Barnum, H., Knill, E., Ortiz, G., Viola, L.: Generalizations of entanglement based on coherent states and convex sets. Phys. Rev. A 68, 032308 (2003)
Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273 (2002)
Brennen, G.K.: An observable measure of entanglement for pure states of multi-qubit systems. J. Quantum Inf. Comput. 3, 619–626 (2003)
Marx, R., Fahmy, A., Kauffman, L., Lomonaco, S., Sporl, A., Pomplun, N.S., Schulte-Herbruggen, T., Myers, J.M., Glaser, S.J.: Nuclear-magnetic-resonance quantum calculations of the Jones polynomial. Phys. Rev. A 81, 032319 (2009)
Kauffman, L.H., Lomonaco Jr, S.J.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)
Jimbo, M.: Yang-Baxter Equations on Integrable Systems. World Scientific, Singapore (1990)
Guijiao, Du, Xue, Kang, Sun, Chunfang, Wang, Gangcheng, Zhou, Chengcheng: The topological basis realization of four-qubit XXZ spin chain. Int. J. Quanum Inf. 10, 1250021 (2012)
Acknowledgments
This work was supported in part by NSF of China (Grant No. 11175043).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Du, G., Xue, K., Zhou, C. et al. The topological basis expression of four-qubit XXZ spin chain with twist boundary condition. Quantum Inf Process 12, 2417–2426 (2013). https://doi.org/10.1007/s11128-012-0523-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-012-0523-3