Skip to main content
Log in

Analytic expressions of quantum correlations in qutrit Werner states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlations in qutrit Werner states are extensively investigated with five popular methods, namely, original quantum discord (OQD) (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008), ameliorated MID (AMID) (Girolami et al. in J Phys A Math Theor 44:352002, 2011), relative entropy (RE) (Modi et al. in Phys Rev Lett 104:080501, 2010) and geometric discord (GD) (Dakić et al. in Phys Rev Lett 105:190502, 2010). Two different analytic expressions of quantum correlations are derived. Quantum correlations captured by the former four methods are same and bigger than those obtained via the GD method. Nonetheless, they all qualitatively characterize quantum correlations in the concerned states. Moreover, as same as the qubit case, there exist quantum correlations in separable qutrit Werner states, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Ekert, A.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Zhou, J.D., Hou, G., Zhang, Y.D.: Teleportation scheme of S-level quantum pure states by two-level Einstein-Podolsky-Rosen states. Phys. Rev. A 64, 012301 (2001)

    Article  ADS  Google Scholar 

  7. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  MATH  Google Scholar 

  8. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  11. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  14. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  15. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  16. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  17. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  18. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  19. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  20. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  21. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  22. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  23. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  24. Xu, J.S., Xu, X.Y., Li, C.F., Zhang, C.J., Zou, X.B., Guo, G.C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    Google Scholar 

  25. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  26. Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)

    Article  ADS  Google Scholar 

  27. Dakić, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nature Phys. 8, 666 (2012)

    Article  ADS  Google Scholar 

  28. Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)

    Article  ADS  Google Scholar 

  29. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  30. Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  31. Hu, X.Y., Gu, Y., Gong, Q., Guo, G.C.: Necessary and sufficient condition for Markovian-dissipative-dynamics-induced quantum discord. Phys. Rev. A 84, 022113 (2011)

    Article  ADS  Google Scholar 

  32. Lu, X.M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  33. Lu, X.M., Xi, Z., Sun, Z., Wang, X.: Geometric measure of quantum discord under decoherence. Quantum Inf. Comput. 10, 0994 (2010)

    MathSciNet  Google Scholar 

  34. Li, B., Wang, Z.X., Fei, S.M.: Geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  35. Shi, M., Sun, C., Jiang, F., Yan, X., Du, J.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)

    Article  ADS  Google Scholar 

  36. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two-parameter class of states in a qubit-qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)

    Google Scholar 

  38. Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  39. Zhang, Z.J., Ye, B.L., Fei, S.M.: quant-ph/1206.0221

  40. Zhang, Z.J.: quant-ph/1202.3640

  41. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)

    Article  Google Scholar 

  42. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  43. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  44. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  45. Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)

    Article  ADS  Google Scholar 

  46. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  47. Baumgartner, B., Hiesmayr, B.C., Narnhofer, H.: State space for two qutrits has a phase space structure in its core. Phys. Rev. A 74, 032327 (2006)

    Article  ADS  Google Scholar 

  48. Derkacz, L., Jakobczyk, L.: Entanglement versus entropy for a class of mixed two-qutrit states. Phys. Rev. A 76, 042304 (2007)

    Article  ADS  Google Scholar 

  49. Bronzan, J.B.: Parametrization of SU(3). Phys. Rev. D 38, 1994 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  50. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  51. Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20103401110007, the NSFC under Grant Nos. 10874122, 10975001, 51072002 and 51272003, the Program for Excellent Talents at the University of Guangdong province (Guangdong Teacher Letter [1010] No. 79), and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Appendix

Appendix

Some partial derivatives

$$\begin{aligned} \mathcal{R}(u_{ij}) : = \log _2 \left( 1-z + 3z|u_{ij}|^2\right)/9+\frac{1}{\ln 2}, \quad i,j=0,1,2. \end{aligned}$$
(38)
$$\begin{aligned}&\frac{\partial S\left(\rho _{AB}|\{\Pi _{A}^{(k)}\}\right)}{\partial {\theta _1}}\nonumber \\&\quad = \frac{2z}{3}\left\{ -\sin 2\theta _1\cos ^2\theta _2\mathcal{R}(u_{00}) +\sin 2\theta _1\mathcal{R}(u_{01}) -\sin 2\theta _1\sin ^2\theta _2\mathcal{R}(u_{02})\right. \nonumber \\&\quad \quad + \left(\sin 2\theta _1\cos ^2\theta _2\cos ^2\theta _3 -\frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\right)\mathcal{R}(u_{10})\nonumber \\&\quad \quad -\sin 2\theta _1\cos ^2\theta _3\mathcal{R}(u_{11}) \nonumber \\&\quad \quad + \left(\sin 2\theta _1\sin ^2\theta _2\cos ^2\theta _3+\frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\right)\mathcal{R}(u_{12})\nonumber \\&\quad \quad +\left(\sin 2\theta _1\cos ^2\theta _2\sin ^2\theta _3+\frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\right)\mathcal{R}(u_{20})\nonumber \\&\quad \quad -\sin 2\theta _1\sin ^2\theta _3\mathcal{R}(u_{21})\nonumber \\&\quad \quad \left.+\left(\sin 2\theta _1\sin ^2\theta _2\sin ^2\theta _3-\frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\right)\mathcal{R}(u_{22})\right\} , \end{aligned}$$
(39)
$$\begin{aligned}&\frac{\partial S\left(\rho _{AB}|\big \{\Pi _{A}^{(k)}\big \}\right)}{\partial {\theta _2}}\nonumber \\&= \frac{2z}{3}\left\{ -\cos ^2\theta _1\sin 2\theta _2\mathcal{R}(u_{00})+\cos ^2\theta _1\sin 2\theta _2\mathcal{R}(u_{02})\right.\nonumber \\&\quad \quad +\left[\sin 2\theta _2 \big (\sin ^2\theta _3-\sin ^2\theta _1\cos ^2\theta _3\big )-\sin \theta _1\cos 2\theta _2\sin 2\theta _3\cos \phi _4\right] (\mathcal{R}(u_{10})-\mathcal{R}(u_{12}))\nonumber \\&\quad \quad \left.+\left[\sin 2\theta _2\big (\cos ^2\theta _3-\sin ^2\theta _1\sin ^2\theta _3\big ) +\sin \theta _1\cos 2\theta _2\sin 2\theta _3\cos \phi _4\right]\big (\mathcal{R}(u_{20})-\mathcal{R}(u_{22})\big )\right\} ,\nonumber \\ \end{aligned}$$
(40)
$$\begin{aligned}&\frac{\partial S\left(\rho _{AB}|\big \{\Pi _{A}^{(k)}\big \}\right)}{\partial {\theta _3}}\nonumber \\&\quad = \frac{2z}{3} \left\{ \left[(\sin ^2\theta _2-\sin ^2\theta _1\cos ^2\theta _2)\sin 2\theta _3-\sin \theta _1\sin 2\theta _2\cos 2\theta _3\cos \phi _4\right]\mathcal{R}(u_{10})\right.\nonumber \\&\quad \quad -\cos ^2\theta _1\sin 2\theta _3\mathcal{R}(u_{11}) +\left[\big (\cos ^2\theta _2-\sin ^2\theta _1\sin ^2\theta _2\big ) \sin 2\theta _3\right.\nonumber \\&\quad \quad +\left.\sin \theta _1\sin 2\theta _2\cos 2\theta _3\cos \phi _4\right] \mathcal{R}(u_{12}) \nonumber \\&\quad \quad + \left[\left(\sin ^2\theta _1\cos ^2\theta _2 -\sin ^2\theta _2\right) \sin 2\theta _3+\sin \theta _1\sin 2\theta _2\cos 2\theta _3\cos \phi _4\right] \mathcal{R}(u_{20})\nonumber \\&\quad \quad +\cos ^2\theta _1\sin 2\theta _3\mathcal{R}(u_{21})\nonumber \\&\quad \quad \left.+ \left[\big (\sin ^2\theta _1\sin ^2\theta _2-\cos ^2\theta _2\big ) \sin 2\theta _3-\sin \theta _1\sin 2\theta _2\cos 2\theta _3\cos \phi _4\right]\mathcal{R}(u_{22})\right\} ,\nonumber \\ \end{aligned}$$
(41)
$$\begin{aligned}&\frac{\partial S\left(\rho _{AB}|\big \{\Pi _{A}^{(k)}\big \}\right)}{\partial {\phi _4}}\nonumber \\&\quad \!= \!\frac{2z}{3}\left\{ \frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\mathcal{R}(u_{10}) \!-\!\frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\mathcal{R}(u_{12})\right.\nonumber \\&\quad \quad \left.-\frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\mathcal{R}(u_{20}) \!+\!\frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\mathcal{R}(u_{22})\right\} .\nonumber \\ \end{aligned}$$
(42)

If \(\theta _1=\theta _2=\theta _3=\phi _4=0\), then \(\frac{\partial S(\rho _{AB}|\{\Pi _{A}^j\})}{\partial \theta _1} =\frac{\partial S(\rho _{AB}|\{\Pi _{A}^j\})}{\partial \theta _2}=\frac{\partial S(\rho _{AB}|\{\Pi _{A}^j\})}{\partial \theta _3} =\frac{\partial S(\rho _{AB}|\{\Pi _{A}^j\})}{\partial \phi _4}=0\).

$$\begin{aligned}&\frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\theta _1}}\nonumber \\&\quad =-\frac{z^2}{9}\left[-\sin 2\theta _1\big (\cos ^2\theta _2+1\big ) \big (|u_{00}|^2-|u_{01}|^2\big ) +\left[\sin 2\theta _1\big ( \cos ^2\theta _2+1\big )\cos ^2\theta _3\right.\right.\nonumber \\&\quad \quad \left.-\frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\right] \big (|u_{10}|^2-|u_{11}|^2\big ) +\left[\sin 2\theta _1\big (\cos ^2\theta _2+1\big )\sin ^2\theta _3\right.\nonumber \\&\quad \quad \left.+\frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\right] \big (|u_{20}|^2-|u_{21}|^2\big )+\sin 2\theta _1\cos ^2\theta _2\big (1-3|u_{02}|^2\big )\nonumber \\&\quad \quad -\big (\sin 2\theta _1\sin ^2\theta _2\cos ^2\theta _3+ \frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\big )\big (1-3|u_{12}|^2\big )\nonumber \\&\quad \quad \left.-\big (\sin 2\theta _1\sin ^2\theta _2\sin ^2\theta _3-\frac{1}{2}\cos \theta _1\sin 2\theta _2\sin 2\theta _3\cos \phi _4\big )\big (1-3|u_{22}|^2\big )\right], \end{aligned}$$
(43)
$$\begin{aligned}&\frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\theta _2}}\nonumber \\&=-\frac{z^2}{9} \left\{ \big (-\cos ^2\theta _1\sin 2\theta _2\big )\big (|u_{00}|^2-|u_{01}|^2\big ) +\left[\sin 2\theta _2\big (\sin ^2\theta _3-\sin ^2\theta _1\cos ^2\theta _3\big )\right.\right.\nonumber \\&\quad \left.-\sin \theta _1\cos 2\theta _2\sin 2\theta _3\cos \phi _4\right]\big (|u_{10}|^2-|u_{11}|^2\big )+ \left[\sin 2\theta _2(\cos ^2\theta _3-\sin ^2\theta _1\sin ^2\theta _3)\right.\nonumber \\&\quad \left.+\sin \theta _1\cos 2\theta _2\sin 2\theta _3\cos \phi _4\right] \big (|u_{20}|^2-|u_{21}|^2\big )-\cos ^2\theta _1\sin 2\theta _2(1-3|u_{02}|^2)\nonumber \\&\quad -\left[\sin 2\theta _2 \big (\sin ^2\theta _1\cos ^2\theta _3-\sin ^2\theta _3\big )+\sin \theta _1\cos 2\theta _2\sin 2\theta _3\cos \phi _4\right]\big (1-3|u_{12}|^2\big )\nonumber \\&\quad \left.-\left[\sin 2\theta _2\big (\sin ^2\theta _1\sin ^2\theta _3-\cos ^2\theta _3\big )- \sin \theta _1\cos 2\theta _2\sin 2\theta _3\cos \phi _4\right]\big (1-3|u_{22}|^2\big )\right\} , \end{aligned}$$
(44)
$$\begin{aligned}&\frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\theta _3}}\nonumber \\&=-\frac{z^2}{9} \left\{ \left[ \big (\cos ^2\theta _1+\sin ^2\theta _2\right.\right.\nonumber \\&\quad \quad -\left.\sin ^2\theta _1\cos ^2\theta _2\big ) \sin 2\theta _3-\sin \theta _1\sin 2\theta _2\cos 2\theta _3\cos \phi _4\right] \nonumber \\&\quad \quad \left[|u_{10}|^2+|u_{21}|^2-|u_{11}|^2-|u_{20}|^2\right]\nonumber \\&\quad \quad +3\left[\big (\cos ^2\theta _2-\sin ^2\theta _1\sin ^2\theta _2\big )\sin 2\theta _3\right.\nonumber \\&\quad \quad \left.\left.+\sin \theta _1\sin 2\theta _2\cos 2\theta _3\cos \phi _4\right] \big (|u_{12}|^2-|u_{22}|^2\big )\right\} , \end{aligned}$$
(45)
$$\begin{aligned}&\frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\phi _4}}\nonumber \\&=-\frac{z^2}{9}\left[\frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\big (|u_{10}|^2-|u_{11}|^2\big )\right.\nonumber \\&\quad \quad -\frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\big (|u_{20}|^2-|u_{21}|^2\big )\nonumber \\&\quad \quad +\frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\big (1-3|u_{12}|^2\big )\nonumber \\&\quad \quad \left.- \frac{1}{2}\sin \theta _1\sin 2\theta _2\sin 2\theta _3\sin \phi _4\big (1-3|u_{22}|^2\big )\right]. \end{aligned}$$
(46)

It is easy to see that \(\frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\theta _1}}= \frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\theta _2}}= \frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\theta _3}}= \frac{\partial \mathcal{Q}_G(\rho _{AB})}{\partial {\phi _4}}=0\) hold if \(\theta _1=\theta _2=\theta _3=\phi _4=0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, B., Liu, Y., Chen, J. et al. Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf Process 12, 2355–2369 (2013). https://doi.org/10.1007/s11128-013-0531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0531-y

Keywords

Navigation