Abstract
Cheat sensitive quantum bit commitment is a most important and realizable quantum bit commitment (QBC) protocol. By taking advantage of quantum mechanism, it can achieve higher security than classical bit commitment. In this paper, we propose a QBC schemes based on pre- and post-selected quantum states. The analysis indicates that both of the two participants’ cheat strategies will be detected with non-zero probability. And the protocol can be implemented with today’s technology as a long-term quantum memory is not needed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37, 156–189 (1988)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. STOC 85, 291–304 (1985)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. JACM 38(1), 691–729 (1991)
Nascimento, J.C.D., Ramos, R.V.: Quantum protocols for zero-knowledge systems. Quant. Inf. Proc. 9(1), 37–46 (2010)
Brassard, G., Crépeau, C.: Quantum bit commitment and coin tossing protocols. In: Advances in Cryptology: Proceedings of Crypto90, Lecture Notes in Computer Science vol. 537, pp. 49–61. Springer, Berlin (1991)
Nayak, A., Shor, P.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304 (2003)
Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully distrustful quantum bit commitment and coin flipping. Phys. Rev. Lett. 106, 220501 (2011)
Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum oblivious transfer protocols. In: Advances in Cryptology: Proceedings of Crypto91, Lecture Notes in Computer Science vol. 576, pp. 351–366. Springer, Berlin (1992)
He, G.P., Wang, Z.D.: Oblivious transfer using quantum entanglement. Phys. Rev. A 73, 012331 (2006)
Li, Y.B., Wen, Q.Y., Qin, S.J.: Comment on “Secure multipartycomputation with a dishonest majority via quantum means”. Phys. Rev. A 84, 016301 (2011)
Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quant. Inf. Proc. doi:10.1007/s11128-011-0323-1
Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110–115 (2012)
Li, Y.B., Wen, Q.Y., Qin, S.J.: Improved secure multiparty computation with a dishonest majority via quantum means. Int. J. Theory. Phys. 52(1), 199–205 (2013)
Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quant. Inf. Proc. (2012). doi:10.1007/s11128-012-0433-4
Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quant. Inf. Proc. (2012). doi:10.1007/s11128-012-0517-1
Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment scheme provably unbreakable by both parties. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pp. 362–371. IEEE, Los Alamitos (1993)
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 17–179. IEEE, New York (1984)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)
Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quant. Inf. Proc. 10(5), 589–602 (2011)
Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)
Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410 (1997)
Li, Q., Li, C.Q., Long, D.Y., Chan, W.H., WuOn, C.H.: The impossibility of non-static quantum bit commitment between two parties. Quant. Inf. Proc. 11(2), 519–527 (2012)
Hardy, L., Kent, A.: Cheat sensitive quantum bit commitment. Phys. Rev. Lett. 92, 157901 (2004)
Shimizu, K., Fukasaka, H., Tamaki, K., Imoto, N.: Cheat-sensitive commitment of a classical bit coded in a block of m n round-trip qubits. Phys. Rev. A 84, 022308 (2011)
Short, A.J., Gisin, N., Popescu, S.: The physics of no-bit-commitment: Generalized quantum non-locality versus oblivious transfer. Quant. Inf. Proc. 5(2), 131–138 (2006)
He, G.P.: Secure quantum bit commitment against empty promises. Phys. Rev. A 74, 022332 (2006)
Choi, J.W., Hong, D., Chang, K.Y., Chi, D.P., Lee, S.:Non-static quantum bit commitment. arXiv:quant-ph/0901.1178
Wolf, S., Wullschleger, J.: Bit commitment from weak non-locality. arXiv:quant-ph/0508233
He, G.P., Wang, Z.D.: Practically secure quantum bit commitment based on quantum seals. arXiv:quant-ph/0804.3531
Adrian, K.: Unconditionally secure bit commitment with flying qudits. New J. Phys. 13, 113015 (2011)
Danan, A., Vaidman, Lev: Practical quantum bit commitment protocol. Quant. Inf. Proc. 11(3), 769–775 (2012)
Aharanov, Y., Bergmann, P.G., Lebowitz, J.L.: Quantum Theory and Measurement. Princeton University Press, Princeton (1983)
Vaidman, L., Aharonov, Y., Albert, D.Z.: How to ascertain the values of \(\sigma _{x},\, \sigma _{y}\), and \(\sigma _z\) of a spin-1/2 particle. Phys. Rev. Lett. 58, 1385 (1987)
Bub, J.: Secure key distribution via pre- and postselected quantum states. Phys. Rev. A 63, 032309 (2001)
Werner, A.H., Franz, T., Werner, R.F.: Quantum cryptography as a retrodiction problem. Phys. Rev. Lett. 103, 220504 (2009)
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
Fuchs, C.A.: Information gain vs. state disturbance in quantum. Theory. Fortschr. Phys. 46, 535–565 (1998)
Acknowledgments
This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061, and 61103210), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0612, 2011YB01), and Key Laboratory Funds of BESTI (Grant No.YQNJ0903).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, YB., Wen, QY., Li, ZC. et al. Cheat sensitive quantum bit commitment via pre- and post-selected quantum states. Quantum Inf Process 13, 141–149 (2014). https://doi.org/10.1007/s11128-013-0566-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0566-0