Skip to main content
Log in

Cheat sensitive quantum bit commitment via pre- and post-selected quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Cheat sensitive quantum bit commitment is a most important and realizable quantum bit commitment (QBC) protocol. By taking advantage of quantum mechanism, it can achieve higher security than classical bit commitment. In this paper, we propose a QBC schemes based on pre- and post-selected quantum states. The analysis indicates that both of the two participants’ cheat strategies will be detected with non-zero probability. And the protocol can be implemented with today’s technology as a long-term quantum memory is not needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37, 156–189 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. STOC 85, 291–304 (1985)

    Google Scholar 

  3. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. JACM 38(1), 691–729 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Nascimento, J.C.D., Ramos, R.V.: Quantum protocols for zero-knowledge systems. Quant. Inf. Proc. 9(1), 37–46 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brassard, G., Crépeau, C.: Quantum bit commitment and coin tossing protocols. In: Advances in Cryptology: Proceedings of Crypto90, Lecture Notes in Computer Science vol. 537, pp. 49–61. Springer, Berlin (1991)

  6. Nayak, A., Shor, P.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304 (2003)

    Article  ADS  Google Scholar 

  7. Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully distrustful quantum bit commitment and coin flipping. Phys. Rev. Lett. 106, 220501 (2011)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum oblivious transfer protocols. In: Advances in Cryptology: Proceedings of Crypto91, Lecture Notes in Computer Science vol. 576, pp. 351–366. Springer, Berlin (1992)

  9. He, G.P., Wang, Z.D.: Oblivious transfer using quantum entanglement. Phys. Rev. A 73, 012331 (2006)

    Article  ADS  Google Scholar 

  10. Li, Y.B., Wen, Q.Y., Qin, S.J.: Comment on “Secure multipartycomputation with a dishonest majority via quantum means”. Phys. Rev. A 84, 016301 (2011)

    Article  ADS  Google Scholar 

  11. Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quant. Inf. Proc. doi:10.1007/s11128-011-0323-1

  12. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110–115 (2012)

    Article  ADS  Google Scholar 

  13. Li, Y.B., Wen, Q.Y., Qin, S.J.: Improved secure multiparty computation with a dishonest majority via quantum means. Int. J. Theory. Phys. 52(1), 199–205 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quant. Inf. Proc. (2012). doi:10.1007/s11128-012-0433-4

    MATH  MathSciNet  Google Scholar 

  15. Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quant. Inf. Proc. (2012). doi:10.1007/s11128-012-0517-1

  16. Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment scheme provably unbreakable by both parties. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pp. 362–371. IEEE, Los Alamitos (1993)

  17. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 17–179. IEEE, New York (1984)

  18. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  19. Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quant. Inf. Proc. 10(5), 589–602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)

    Article  ADS  Google Scholar 

  21. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410 (1997)

    Article  ADS  Google Scholar 

  22. Li, Q., Li, C.Q., Long, D.Y., Chan, W.H., WuOn, C.H.: The impossibility of non-static quantum bit commitment between two parties. Quant. Inf. Proc. 11(2), 519–527 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hardy, L., Kent, A.: Cheat sensitive quantum bit commitment. Phys. Rev. Lett. 92, 157901 (2004)

    Article  ADS  Google Scholar 

  24. Shimizu, K., Fukasaka, H., Tamaki, K., Imoto, N.: Cheat-sensitive commitment of a classical bit coded in a block of m n round-trip qubits. Phys. Rev. A 84, 022308 (2011)

    Article  ADS  Google Scholar 

  25. Short, A.J., Gisin, N., Popescu, S.: The physics of no-bit-commitment: Generalized quantum non-locality versus oblivious transfer. Quant. Inf. Proc. 5(2), 131–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, G.P.: Secure quantum bit commitment against empty promises. Phys. Rev. A 74, 022332 (2006)

    Article  ADS  Google Scholar 

  27. Choi, J.W., Hong, D., Chang, K.Y., Chi, D.P., Lee, S.:Non-static quantum bit commitment. arXiv:quant-ph/0901.1178

  28. Wolf, S., Wullschleger, J.: Bit commitment from weak non-locality. arXiv:quant-ph/0508233

  29. He, G.P., Wang, Z.D.: Practically secure quantum bit commitment based on quantum seals. arXiv:quant-ph/0804.3531

  30. Adrian, K.: Unconditionally secure bit commitment with flying qudits. New J. Phys. 13, 113015 (2011)

    Article  Google Scholar 

  31. Danan, A., Vaidman, Lev: Practical quantum bit commitment protocol. Quant. Inf. Proc. 11(3), 769–775 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Aharanov, Y., Bergmann, P.G., Lebowitz, J.L.: Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  33. Vaidman, L., Aharonov, Y., Albert, D.Z.: How to ascertain the values of \(\sigma _{x},\, \sigma _{y}\), and \(\sigma _z\) of a spin-1/2 particle. Phys. Rev. Lett. 58, 1385 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  34. Bub, J.: Secure key distribution via pre- and postselected quantum states. Phys. Rev. A 63, 032309 (2001)

    Article  ADS  Google Scholar 

  35. Werner, A.H., Franz, T., Werner, R.F.: Quantum cryptography as a retrodiction problem. Phys. Rev. Lett. 103, 220504 (2009)

    Article  ADS  Google Scholar 

  36. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  37. Fuchs, C.A.: Information gain vs. state disturbance in quantum. Theory. Fortschr. Phys. 46, 535–565 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061, and 61103210), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0612, 2011YB01), and Key Laboratory Funds of BESTI (Grant No.YQNJ0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YB., Wen, QY., Li, ZC. et al. Cheat sensitive quantum bit commitment via pre- and post-selected quantum states. Quantum Inf Process 13, 141–149 (2014). https://doi.org/10.1007/s11128-013-0566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0566-0

Keywords

Navigation