Abstract
A separable input state consisting of an \(n\)-photon Fock state and a coherent state propagating through coupled waveguides is investigated in detail. We obtained the analytical solutions for the state vector evolution, the wavefunction or probability distribution in the quadrature space and the \(P\)-function in the phase space. It is proved that the propagating states may evolve into quantum vortex states even for coupled lossy waveguides by appropriately selecting the propagation time. Based on the analytical \(P\)-function in phase space and the relative linear entropy for the propagating state, it is found that the propagating state may be entangled and non-classical. Specially, in absence of loss, the degree of entanglement only depends on the photon number \(n\) of the input Fock state but is independent of the displacement parameter \(\alpha \) associated with the input coherent state. Moreover, for coupled lossy waveguides the entanglement evolution can exhibit new features.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Braunstein, S.L., Pati, A.K.: Quantum Information with Continuous Variables. Kluwer Academic, Dordrecht (2003)
Braunstein, S.L., von Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)
Agarwal, G.S., Puri, R.R., Singh, R.P.: Vortex states for the quantized radiation field. Phys. Rev. A 56, 4207–4215 (1997)
Agarwal, G.S., Banerji, J.: Entanglement by linear SU(2) transformations: generation and evolution of quantum vortex states. J. Phys. A 39, 11503–11519 (2006)
Agarwal, G.S.: Engineering non-Gaussian entangled states with vortices by photon subtraction. New J. Phys. 13, 073008 (2011)
Bandyopadhyay, A., Singh, R.P.: Wigner distribution of elliptical quantum optical vortex. Opt. Commun. 284, 256–261 (2011)
Bandyopadhyay, A., Prabhakar, S., Singh, R.P.: Entanglement of a quantum optical elliptic vortex. Phys. Lett. A 375, 1926–1929 (2011)
Zhu, K.C., Li, S.X., Zheng, X.J., Tang, H.Q.: Non-Gaussian state with vortex structure of quantized radiation field. J. Opt. Soc. Am. B 29, 1179–1186 (2012)
Zhu, K.C., Li, S.X., Zheng, X.J., Zhou, Y.P.: Two-mode superposition coherent states with spatial vortex structure for the quantized radiation field. J. Mod. Opt. 59, 873–877 (2012)
Lai, W.K., Buzek, V., Knight, P.L.: Nonclassical fields in a linear directional coupler. Phys. Rev. A 43, 6323–6336 (1991)
Rai, A., Agarwal, G.S., Perk, J.H.H.: Transport and quantum walk of nonclassical light in coupled waveguides. Phys. Rev. A 78, 042304 (2008)
Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)
Politi, A., Matthews, J.C.F., O’Brien, J.L.: Shors quantum factoring algorithm on a photonic chip. Science 325, 1221–1221 (2009)
Longhi, S.: Optical analog of population trapping in the continuum: classical and quantum interference effects. Phys. Rev. A 79, 023811 (2009)
Bromberg, Y., Lahini, Y., Morandotti, R., Silberberg, Y.: Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904 (2009)
Rai, A., Das, S., Agarwal, G.S.: Non-Gaussian and Gaussian entanglement in coupled lossy waveguides. Opt. Express 18, 6241–6254 (2010)
Schleich, W.P.: Quantum Optics in Phase Space. Wiley/VCH, New York (2001)
Sanders, B.C., Bartlett, S.D., Rudolph, T., Knight, P.L.: Photon-number superposition and the entangled coherent-state representation. Phys. Rev. A 68, 042329 (2003)
Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132–5135 (1990)
van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)
Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)
Agarwal, G.S., Biswas, A.: Quantitative measures of entanglement in pair coherent states. J. Opt. B 7, 350–354 (2005)
Marian, P., Marian, T.A., Scutaru, H.: Inseparability of mixed two-mode Gaussian states generated with a SU(1,1) interferometer. J. Phys. A 34, 6969–6980 (2001)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhu, K., Li, S., Tang, H. et al. Vortex and entanglement occurring in propagating states through coupled lossy waveguides. Quantum Inf Process 12, 2901–2915 (2013). https://doi.org/10.1007/s11128-013-0572-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0572-2