Skip to main content
Log in

Multi-color continuous-variable entangled optical beams generated by NOPOs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an alternative scalable way to generate multi-color entangled optical beams efficiently utilizing the tripartite entanglement existent between three fields—signal, idler, and pump—from a nondegenerate optical parametric oscillator (NOPO) operating above the threshold. The special case of two cascaded NOPOs is studied, as it is shown that the five beams with very different frequencies are generated by NOPOA (one of the retained signal and idler beams, and the reflected pump beam) and NOPOB (the output signal and idler beams, and the reflected pump beam). These beams are theoretically demonstrated to be continuous variable (CV) entangled with each other by applying the positivity of the partially transposed criterion for the inseparability of multipartite CV entanglement. The symplectic eigenvalues of the partial transposition covariance matrix of the obtained optical entangled state are numerically calculated in terms of experimentally reachable system parameters. The optimal operation conditions to achieve high five-color entanglement are presented. As the cavity parameters and the nonlinear crystals of the two NOPOs can be chosen freely, the frequencies of the submodes in the entangled state thus are adjustable to match the transition frequencies of atoms or low loss fiber-optic communication window. The calculated results provide direct references for future experiment to generate multi-color entangled optical beams efficiently by means of NOPOs operating above the threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247–255 (2000)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Chou, C.W., de Riedmatten, H., Felinto, D., Polyakov, S.V., van Enk, S.J., Kimble, H.J.: Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature (London) 438, 828–832 (2005)

    Article  ADS  Google Scholar 

  5. Atature, M., Dreiser, J., Badolato, A., Högele, A., Karrai, K., Imamoglu, A.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)

    Article  ADS  Google Scholar 

  6. Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom ‘Schrödinger cat’ state. Nature (London) 438, 639–642 (2005)

    Article  ADS  Google Scholar 

  7. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  8. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  9. Su, X.L., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  10. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  11. Tan, A., Wang, Y., Jin, X., Su, X., Jia, X., Zhang, J., Xie, C., Peng, K.C.: Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables. Phys. Rev. A 78, 013828 (2008)

    Article  ADS  Google Scholar 

  12. Yukawa, M., Ukai, R., Van Loock, P., Furusawa, A.: Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008)

    Article  ADS  Google Scholar 

  13. Reid, M.D., Drummond, P.D.: Quantum correlations of phase in nondegenerate parametric oscillation. Phys. Rev. Lett. 60, 2731 (1988)

    Article  ADS  Google Scholar 

  14. Reid, M.D., Drummond, P.D.: Correlations in nondegenerate parametric oscillation: squeezing in the presence of phase diffusion. Phys. Rev. 40, 4493 (1989)

    Article  ADS  Google Scholar 

  15. Ou, Z.Y., Pereira, S.F., Kimble, H.J., Peng, K.C.: Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663 (1992)

    Article  ADS  Google Scholar 

  16. Villar, A.S., Cruz, L.S., Cassemiro, K.N., Martinelli, M., Nussenzveig, P.: Generation of bright two-color continuous variable entanglement. Phys. Rev. Lett. 95, 243603 (2005)

    Article  ADS  Google Scholar 

  17. Villar, A.S., Martinelli, M., Fabre, C., Nussenzveig, P.: Direct production of tripartite pump–signal–idler entanglement in the above-threshold optical parametric oscillator. Phys. Rev. Lett. 97, 140504 (2006)

    Article  ADS  Google Scholar 

  18. Coelho, A.S., Barbosa, F.A.S., Cassemiro, K.N., Villar, A.S., Martinelli, M., Nussenzveig, P.: Three-color entanglement. Science 326, 823–826 (2009)

    Article  ADS  Google Scholar 

  19. Guo, J., Zou, H., Zhai, Z., Zhang, J., Gao, J.: Generation of continuous-variable tripartite entanglement using cascaded nonlinearities. Phys. Rev. A 71, 034305 (2005)

    Article  ADS  Google Scholar 

  20. Olsen, M.K., Bradley, A.S.: Asymmetric polychromatic tripartite entanglement from interlinked \(\chi (2)\) parametric interactions. Phys. Rev. A 74, 063809 (2006)

    Article  ADS  Google Scholar 

  21. Tan, H.T., Huang, H.: Bright quadripartite entanglement from competing \(\chi (2)\) nonlinearities. Phys. Rev. A 83, 015802 (2011)

    Article  ADS  Google Scholar 

  22. Midgley, S.L.W., Bradley, A.S., Pfister, O., Olsen, M.K.: Quadripartite continuous-variable entanglement via quadruply concurrent down-conversion. Phys. Rev. A 81, 063834 (2010)

    Article  ADS  Google Scholar 

  23. McKinstrie, C.J., van Enk, S.J., Raymer, M.G., Radic, S.: Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber. Opt. Express 16, 2720–2739 (2008)

    Article  ADS  Google Scholar 

  24. Tan, H.T., Li, G.X.: Polychromatic quadripartite entanglement from concurrent four-wave mixing in a three-level atomic system. Phys. Rev. A 82, 032322 (2010)

    Article  ADS  Google Scholar 

  25. Cassemiro, K.N., Villar, A.S.: Scalable continuous-variable entanglement of light beams produced by optical parametric oscillators. Phys. Rev. A 77, 022311 (2008)

    Article  ADS  Google Scholar 

  26. Tan, A., Xie, C., Peng, K.: Bright three-color entangled state produced by cascaded optical parametric oscillators. Phys. Rev. A 85, 013819 (2012)

    Article  ADS  Google Scholar 

  27. Jia, X., Yan, Z., Duan, Z., Su, X., Wang, H., Xie, C., Peng, K.: Experimental realization of three-color entanglement of optical fiber communication and atomic storage wavelengths. Phys. Rev. Lett. 109, 253604 (2012)

    Article  ADS  Google Scholar 

  28. Cassemiro, K.N., Villar, A.S., Martinelli, M., Nussenzveig, P.: The quest for three-color entanglement: experimental investigation of new multipartite quantum correlations. Opt. Express 15, 18236 (2007)

    Google Scholar 

  29. Cesar, J.E.S., Coelho, A.S., Cassemiro, K.N., Villar, A.S., Lassen, M., Nussenzveig, P., Martineli, M.: Extra phase noise from thermal fluctuations in nonlinear optical crystals. Phys. Rev. A 79, 063816 (2009)

    Article  ADS  Google Scholar 

  30. Fabre, C., Giacobino, E., Heidmann, A., Raynaud, S.: Noise characteristics of a non-degenerate optical parametric oscillator. J. Phys. (France) 50, 1209–1225 (1989)

    Article  Google Scholar 

  31. Walls, D.F., Miburn, G.J.: Quantum Optics. Springer, New York (2008)

    Book  MATH  Google Scholar 

  32. Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  33. Werner, R.F., Wolf, M.M.: Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658 (2001)

    Article  ADS  Google Scholar 

  34. Reynaud, S., Heidmann, A.: A semiclassical linear input output transformation for quantum fluctuations. Opt. Commun. 71, 209 (1989)

    Google Scholar 

  35. Lane, A.S., Reid, M.D., Walls, D.F.: Quantum analysis of intensity fluctuations in the nondegenerate parametric oscillator. Phys. Rev. A 38, 788 (1988)

    Google Scholar 

  36. Collett, M.J., Gardiner, C.W.: Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386 (1984)

    Article  ADS  Google Scholar 

  37. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

Tan Aihong thanks Prof. Xie Changde and Dr. Jia Xiaojun for the helpful discussions. This work was supported in part by the National Basic Research Program of China (Grant No. 2012CB921803) and the National Natural Science Foundation of China (Grant No. 61078010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihong Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, A. Multi-color continuous-variable entangled optical beams generated by NOPOs. Quantum Inf Process 12, 3275–3289 (2013). https://doi.org/10.1007/s11128-013-0594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0594-9

Keywords

Navigation