Abstract
We propose an efficient nonlocal entanglement distribution protocol (EDP) to purify the two-photon polarization-entangled state, resorting to the projection measurement on the additional photons. With the help of the cross-Kerr nonlinearity, two remote parties can share two-photon maximally entangled polarization state from the arbitrary two-photon states with a certain success probability by iterating the entanglement purification process 6 times. Compared with conventional EDPs, the present one can obtain maximally entangled polarization state over an collective-noise channel with deterministic success probability. That is, the EDP is an optimal one.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
Bell, J.S.: On the einstein podolsky rosen paradox. Physics (Long Island City, NY) 1, 195–200 (1965)
Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Deng, F.G., Long, G.L.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(1–6), 042317 (2003)
Kim, H., Cheong, Y.M., Lee, H.W.: Generalized measurement and conclusive teleportation with nonmaximal entanglement. Phys. Rev. A 70(1–7), 012309 (2004)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)
Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)
Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(1–4), 087901 (2003)
Yamamoto, T., Shimamura, J., Özdemir, S.K., Koashi, M., Imoto, N.: Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95(1–4), 040503 (2005)
Kalamidas, D.: Single-photon quantum error rejection and correction with linear optics. Phys. Lett. A 343, 331 (2005)
Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91(1–3), 144101 (2007)
Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81(1–5), 042332 (2010)
Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)
Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)
Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)
Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62(1–3), 054301 (2000)
Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64(1–8), 012304 (2001)
Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64(1–3), 014301 (2001)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77(1–7), 062325 (2008)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inform. Comput. 10, 272 (2010)
Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85(1–7), 012307 (2012)
Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85(1–9), 042302 (2012)
Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85(1–5), 022311 (2012)
Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90(1–4), 207901 (2003)
Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature (London) 421, 343 (2003)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)
Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)
Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067 (2001)
Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89(1–4), 257901 (2002)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77(1–8), 042308 (2008)
Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(1–4), 044304 (2010)
Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(1–7), 032307 (2010)
Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(1–4), 044305 (2010)
Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(1–8), 062316 (2011)
Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84(1–8), 032307 (2011)
Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inform. Comput. 11, 988 (2011)
Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84(1–17), 052312 (2011)
Nemoto, N., Munro, W.J.: A near deterministic linear optical CNOT gate. Phys. Rev. Lett. 93(1–4), 250502 (2004)
Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71(1–4), 060302(R) (2005)
Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowing, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)
He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83(1–8), 053826 (2011)
Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73(1–11), 062305 (2006)
Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9(1–17), 16 (2007)
Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81(1–8), 043823 (2010)
Pryde, G.J., O’Brien, J.L., White, A.G., Bartlett, S.D., Ralph, T.C.: Measuring a photonic qubit without destroying it. Phys. Rev. Lett. 92(1–4), 190402 (2004)
Ralph, T.C., Bartlett, S.D., O’Brien, J.L., Pryde, G.J., Wiseman, H.M.: Quantum nondemolition measurements for quantum information. Phys. Rev. A 73(1–11), 012113 (2006)
Pryde, G.J., O’Brien, J.L., White, A.G., Ralph, T.C., Wiseman, H.M.: Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94(1–4), 220405 (2005)
Jin, J.S., Yu, C.H., Song, H.S.: Nondestructive identification of the Bell diagonal state. Phys. Rev. A 83(1–6), 032109 (2011)
Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66(1–9), 063814 (2002)
Hofmann, H.F., Kojima, K., Takeuchi, S., Sasaki, K.: Optimized phase switching using a single-atom nonlinearity. J. Opt. B: Quantum Semiclass. Opt. 5, 218 (2003)
Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 81(1–11), 062338 (2010)
Kok, P.: Effects of self-phase modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77(1–7), 013808 (2008)
Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80(1–5), 042310 (2009)
Lin, Q., He, B., Bergou, J.A., Ren, Y.H.: Processing multi-photon state through operation on single photon: methods and applications. Phys. Rev. A 80, 042311 (2009)
Schmidt, H., Imamoglu, A.: Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996)
Chen, Y.F., Wang, C.Y., Wang, S.H., Yu, I.A.: Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96(1–4), 043603 (2006)
Acknowledgments
This work was supported by the Natural Science Foundation of Fuzhou University of China under Grant No. XRC-0976 and No. 2010-XQ-28, the funds from Education Department of Fujian Province of China under Grant No. JA11005, No. JA10009 and No. JA10039, the National Natural Science Foundation of Fujian Province of China under Grant No. 2010J01006 and No. 2012J01269, the National Natural Science Foundation of China under Grant No. 11047122 and No. 11105030, the Foundation of Ministry of Education of China under Grant No. 212085, and China Postdoctoral Science Foundation under Grant No. 20100471450.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Xia, Y., Fan, LL., Hao, SY. et al. Efficient nonlocal entangled state distribution over the collective-noise channel. Quantum Inf Process 12, 3553–3568 (2013). https://doi.org/10.1007/s11128-013-0610-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0610-0