Skip to main content
Log in

Remote information concentration via \(W\) state: reverse of ancilla-free phase-covariant telecloning

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate generalized remote information concentration as the reverse process of ancilla-free phase-covariant telecloning (AFPCT) which is different from the reverse process of optimal universal telecloning. It is shown that the quantum information via \(1\rightarrow 2\) AEPCT procedure can be remotely concentrated back to a single qubit with a certain probability by utilizing (non-)maximally entangled \(W\) states as quantum channels. Our protocols are the generalization of Wang’s scheme (Open J Microphys 3:18–21. doi:10.4236/ojm.2013.31004, 2013). And von Neumann measure and positive operator-valued measurement are performed in the maximal and non-maximal cases respectively. Relatively the former, the dimension of measurement space in the latter is greatly reduced. It makes the physical realization easier and suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  2. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271–272 (1982)

    Article  ADS  Google Scholar 

  3. Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bužek, V., Hillery, M.: Crossed-field hydrogen atom and the three-body Sun-Earth-Moon problem. Phys. Rev. A 54, 1844–1888 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bruß, D., Calsamiglia, J., Lütkenhaus, N.: Quantum cloning and distributed measurements. Phys. Rev. A 63, 042308 (2001)

    Article  ADS  Google Scholar 

  6. Galvao, E.F., Hardy, L.: Cloning and quantum computation. Phys. Rev. A 62, 022301 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. Ricci, M., Sciarrino, F., Cerf, N.J., Filip, R., et al.: Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005)

    Article  ADS  Google Scholar 

  8. Lamoureux, L.P., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis. Phys. Rev. A 73, 032304 (2006)

    Article  ADS  Google Scholar 

  9. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  10. Murao, M., Plenio, M.B., Vedral, V.: Quantum-information distribution via entanglement. Phys. Rev. A 61, 032311 (2000)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Ghiu, I.: Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the “many-to-many” communication protocol. Phys. Rev. A 67, 012323 (2003)

    Article  ADS  Google Scholar 

  13. Wang, X.W., Yang, G.J.: Probabilistic ancilla-free phase-covariant telecloning of qudits with the optimal fidelity. Phys. Rev. A 79, 064306 (2009)

    Article  ADS  Google Scholar 

  14. Wang, X.W., Su, Y.H., Yang, G.J.: One-to-many economical phase-covariant cloning and telecloning of qudits. Chin. Phys. Lett. 27(10), 100303 (2010)

    Article  ADS  Google Scholar 

  15. Ghiu, I., Karlsson, A.: Broadcasting of entanglement at a distance using linear optics and telecloning of entanglement. Phys. Rev. A 72, 032331 (2005)

    Article  ADS  Google Scholar 

  16. Chen, L., Chen, Y.X.: Asymmetric quantum tele-cloning of multiqubit states. Quan. Inf. Comput. 7, 716–729 (2007)

    MATH  Google Scholar 

  17. Wang, X.W., Yang, G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315 (2009)

    Article  ADS  Google Scholar 

  18. Murao, M., Vedral, V.: Remote information concentration using a bound entangled state. Phys. Rev. Lett. 86, 352–356 (2001)

    Article  ADS  Google Scholar 

  19. Yu, Y.F., Feng, J., Zhan, M.S.: Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state. Phys. Rev. A 68, 024303 (2003)

    Article  ADS  Google Scholar 

  20. Chen, Y.H., Yu, Y.F., Zhang, Z.M.: Entangled states used in remote information concentration and their properties. Chin. Phys. Lett. 23, 3158–3162 (2006)

    Article  ADS  Google Scholar 

  21. Chen, Y.H., Zhang, D.Y., Gao, F., Zhan, X.G.: Remote information concentration via a four-particle cluster state. Chin. Phys. Lett. 26, 090304 (2009)

    Article  ADS  Google Scholar 

  22. Augusiak, R., Horodecki, P.: Generalized Smolin states and their properties. Phys. Rev. A 73, 012318 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. Wang, X.W., Zhang, D.Y., Yang, G.J., Tang, S.Q., Xie, L.J.: Remote information concentration and multipartite entanglement in multilevel systems. Phys. Rev. A 84, 042310 (2011)

    Article  ADS  Google Scholar 

  24. Hsu, L.Y.: Remote one-qubit information concentration and decoding of operator quantum error-correction codes. Phys. Rev. A 76, 032311 (2007)

    Article  ADS  Google Scholar 

  25. Wang, X.W., Tang, S.Q.: Remote quantum-information concentration: reversal of ancilla-free phase-covariant telecloning. Open J. Microphys. 3, 18–21 (2013). doi:10.4236/ojm.2013.31004

    Article  ADS  Google Scholar 

  26. Wang, X.W., Yang, G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315 (2009)

    Article  ADS  Google Scholar 

  27. Dür, W., et al.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  28. Bennet, C.H., et al.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  29. Ekert, A.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796–7801 (2010)

    Article  ADS  Google Scholar 

  31. Vedral, V., Plenio, M.B.: Progress in quantum electronics. Prog. Quantum Electron. 22, 1–39 (1998)

    Article  ADS  Google Scholar 

  32. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822–829 (1998)

    Article  ADS  Google Scholar 

  34. Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  35. Luo, M.X., Peng, J.Y., Mo, Z.W.: Joint remote preparation of an arbitrary five-qubit brown state. Int. J. Theor. Phys. 52, 644–653 (2013)

    Article  MATH  Google Scholar 

  36. Wang, Z., Liu, Y.M., Wang, D., Zhang, Z.J.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276(2), 322–326 (2007)

    Article  ADS  Google Scholar 

  37. Zha, X.W.: The expansion of orthogonal complete set and transformation operator in teleportation. Chin. Phys. Soc. 56, 1875–1880 (2007)

    MathSciNet  Google Scholar 

  38. Gordon, G., Rigolin, G.: Eneralized quantum state sharing. Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  39. Cu, Y.J.: Deterministic exact teleportation via two partially entangled pairs of particles. Opt. Commun. 259(1), 385–388 (2006)

    Article  ADS  Google Scholar 

  40. Wang, Z.Y., Wang, D., Liu, J., Shi, H.H.: Probabilistic teleportation of an arbitrary unknown two-qubit state via positive operator-valued measure and two non-maximally entangled states. Commun. Theor. Phys. 46(5), 859–862 (2006)

    Article  ADS  Google Scholar 

  41. Yan, F.L., Ding, H.W.: Probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure. Chin. Phys. Lett. 23(1), 17–20 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yin Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, JY., Bai, Mq. & Mo, ZW. Remote information concentration via \(W\) state: reverse of ancilla-free phase-covariant telecloning. Quantum Inf Process 12, 3511–3525 (2013). https://doi.org/10.1007/s11128-013-0613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0613-x

Keywords

Navigation