Abstract
A scheme is presented to implement bidirectional controlled quantum teleportation (QT) by using a five-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary single qubit state called qubit A to Bob and at the same time, Bob may also transmit an arbitrary single qubit state called qubit B to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional controlled QT protocol works. By using this bidirectional controlled teleportation, espcially, a bidirectional controlled quantum secure direct communication (QSDC) protocol, i.e., the so-called controlled quantum dialogue, is further investigated. Under the situation of insuring the security of the quantum channel, Alice (Bob) encodes a secret message directly on a sequence of qubit states and transmits them to Bob (Alice) supervised by Charlie. Especially, the qubits carrying the secret message do not need to be transmitted in quantum channel. At last, we show this QSDC scheme may be determinate and secure.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta. Phys. Pol. A 101, 357 (2002)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)
Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)
Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)
Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)
Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A 75(2), 026301 (2007)
Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)
Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1), 67–70 (2006)
Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Euro. Phys. J. D 67, 30–37 (2013)
Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342(1), 60–66 (2005)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)
Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)
Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)
Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55–58 (2006)
Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum. Inf. Process. (2013). doi:10.1007/s11128-013-0537-5
Liu, D.C., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Generalized three-party qubit operation sharing. Int. J. Quanum Inf. 11(1), 1350011 (2013)
Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum. Inf. Process. (2013). doi:10.1007/s11128-013-0533-9
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)
Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)
Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41(1), 75–78 (2004)
Cao, H.J., Song, H.S.: Quantum secure direct communication scheme using a W state and teleportation. Phys. Scr. 74(5), 572 (2006)
Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893–897 (2005)
Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52(1), 22–27 (2013)
Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum secure direct communication using six-particle maximally entangled states and teleportation. Commun. Theor. Phys. 51(3), 429–432 (2009)
Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)
Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)
Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)
Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quant. Inf. Process. (2013). doi:10.1007/s11128-012-0487-3
Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38(5), 1119–1131 (2005)
Muralidharan, S., Panigrahi, P.K.: Perfect teleportation quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)
Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)
Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys. Lett. 87(6), 60008 (2009)
Panigrahi, P.K., Karumanchi, S., Muralidharan, S.: Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state. Pramana 73(3), 499–504 (2009)
Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30(2), 020301 (2013)
Wang, X.W., Peng, Z.H., Jia, C.X., Wang, Y.H., Liu, X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282(4), 670–673 (2009)
Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69(6), 064302 (2004)
Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)
Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)
Cerè, A., Lucamarini, M., Giuseppe, G.D., Tombesi, P.: Experimental test of two-way quantum key distribution in the presence of controlled noise. Phys. Rev. Lett. 96(20), 200501 (2006)
Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theor. Comput. Sci. 292(3), 575–588 (2003)
Acknowledgments
This work is supported by the National Natural Science Foundation of China (Grant No. 61265001), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB202005 and No. 2010GZW0026 and No. 20132BAB202008), the Research Foundation of state key laboratory of advanced optical communication systems and networks, Shanghai Jiao Tong University, China (2011GZKF031104), and the Research Foundation of the Education Department of Jiangxi Province (No. GJJ13236 and No. GJJ10404 and No. GJJ13235).
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Alice’s possible measurement result, Bob’s possible measurement result, Charlie’s possible measurement result, final state with the corresponding transformation performed by Alice and Bob on qubits 4 and 3, respectively, where \(\sigma ^{i},i\in \left\{ {x,y,z} \right\} \) are Pauli matrices.
Alice’s result | Bob’s result | Charlie’s result | Final state with the receiver | Unitary transformation corresponding to the measurement outcomes (++, \(+-, -+, -\)) |
---|---|---|---|---|
\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Phi ^{\pm }} \right\rangle _{B2}\) | \(\left| 0 \right\rangle _5 \) | \(\left( {b_0 \left| 1 \right\rangle \pm b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \) | \(\sigma _4^x \otimes I_3, \sigma _4^x \otimes \sigma _3^z, -i\sigma _4^y \otimes I_3, -i\sigma _4^y \otimes \sigma _3^z \) |
\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Psi ^{\pm }} \right\rangle _{B2} \) | \(\left| 0 \right\rangle _5 \) | \(\left( {b_0 \left| 0 \right\rangle \pm b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \) | \(I_4 \otimes I_3, I_4 \otimes \sigma _3^z, \sigma _4^z \otimes I_3, \sigma _4^z \otimes \sigma _3^z \) |
\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Phi ^{\pm }} \right\rangle _{B2} \) | \(\left| 0 \right\rangle _5 \) | \(\left( {b_0 \left| 1 \right\rangle \pm b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \) | \(\sigma _4^x \otimes \sigma _3^x, \sigma _4^x \otimes -i\sigma _3^y, -i\sigma _4^y \otimes \sigma _3^x, -i\sigma _4^y \otimes -i\sigma _3^y \) |
\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Psi ^{\pm }} \right\rangle _{B2} \) | \(\left| 0 \right\rangle _5 \) | \(\left( {b_0 \left| 0 \right\rangle \pm b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \) | \(I_4 \otimes \sigma _3^x, I_4 \otimes -i\sigma _3^y, \sigma _4^z \otimes \sigma _3^x, \sigma _4^z \otimes -i\sigma _3^y \) |
\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Phi ^{\pm }} \right\rangle _{B2} \) | \(\left| 1 \right\rangle _5 \) | \(\left( {b_0 \left| 0 \right\rangle \mp b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \) | \(\sigma _4^z \otimes \sigma _3^x, \sigma _4^z \otimes -i\sigma _3^y, I_4 \otimes \sigma _3^x, I_4 \otimes -i\sigma _3^y \) |
\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Psi ^{\pm }} \right\rangle _{B2} \) | \(\left| 1 \right\rangle _5 \) | \(-\left( {b_0 \left| 1 \right\rangle \mp b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \) | \(\sigma _4^z \sigma _4^x \otimes \sigma _3^x, \sigma _4^z \sigma _4^x \otimes -i\sigma _3^y, -i\sigma _4^y \sigma _4^z \otimes \sigma _3^x, -i\sigma _4^y \sigma _4^z \otimes -i\sigma _3^y \) |
\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Phi ^{\pm }} \right\rangle _{B2} \) | \(\left| 1 \right\rangle _5 \) | \(\left( {b_0 \left| 0 \right\rangle \mp b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \) | \(\sigma _4^z \otimes I_3, \sigma _4^z \otimes \sigma _3^z, I_4 \otimes I_3, I_4 \otimes \sigma _3^z \) |
\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \) | \(\left| {\Psi ^{\pm }} \right\rangle _{B2} \) | \(\left| 1 \right\rangle _5 \) | \(-\left( {b_0 \left| 1 \right\rangle \mp b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \) | \(\sigma _4^z \sigma _4^x \otimes I_3, \sigma _4^z \sigma _4^x \otimes \sigma _3^z, -i\sigma _4^y \sigma _4^z \otimes I_3, -i\sigma _4^y \sigma _4^z \otimes \sigma _3^z \) |
Rights and permissions
About this article
Cite this article
Li, Yh., Li, Xl., Sang, Mh. et al. Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf Process 12, 3835–3844 (2013). https://doi.org/10.1007/s11128-013-0638-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0638-1