Skip to main content
Log in

Considering nearest neighbor constraints of quantum circuits at the reversible circuit level

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Since many underlying quantum algorithms include a Boolean component, synthesis of the respective circuits is often conducted by a two-stage procedure: First, a reversible circuit realizing the Boolean component is generated. Afterwards, this circuit is mapped into a respective quantum gate cascade. In addition, recent physical accomplishments have led to further issues to be considered, e.g. nearest neighbor constraints. However, due to the lack of proper metrics, these constraints usually have been addressed at the quantum circuit level only. In this paper, we present an approach that allows the consideration of nearest neighbor constraints already at the reversible circuit level. For this purpose, a recently introduced gate library is assumed for which a proper metric is proposed. By means of an optimization approach, the applicability of the proposed scheme is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amini, J.M., Uys, H., Wesenberg, J.H., Seidelin, S., Britton, J., Bollinger, J.J., Leibfried, D., Ospelkaus, C., VanDevender, A.P., Wineland, D.J.: Toward scalable ion traps for quantum information processing. New J. Phys. 12(3), 033,031 (2010) http://stacks.iop.org/1367-2630/12/i=3/a=033031

    Google Scholar 

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995)

    Google Scholar 

  3. Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis of reversible circuits by graph partitioning. CoRR (2011)

  4. Chakrabarti, A., Sur-Kolay, S.: Nearest neighbour based synthesis of quantum boolean circuits. Eng. Lett. 15, 356–361 (2007)

    Google Scholar 

  5. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083,032 (2009) http://stacks.iop.org/1367-2630/11/i=8/a=083032

  6. DiVincenzo, D.P., Solgun, F.: Multi-qubit parity measurement in circuit quantum electrodynamics. New J. Phys. 15(7), 075,001 (2013). http://stacks.iop.org/1367-2630/15/i=7/a=075001

  7. Dürr, C., Heiligman, M., Hoyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35, 1310–1328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fredkin, E.F., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3/4), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)

  10. Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., al kar, D.C., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

    Article  ADS  Google Scholar 

  11. Herrera-Marti, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032,332 (2010). doi:10.1103/PhysRevA.82.032332

    Article  Google Scholar 

  12. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: International Conference on Quantum, Nano and Micro Technologies, pp. 26–33. IEEE Computer Society, Washington, DC, USA (2009). doi:10.1109/ICQNM.2009.25

  13. Hollenberg, L.C.L., Greentree, A.D., Fowler, A.G., Wellard, C.J.: Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045,311 (2006). doi:10.1103/PhysRevB.74.045311

    Article  Google Scholar 

  14. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031,007 (2012). doi:10.1103/PhysRevX.2.031007

    Google Scholar 

  15. Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  Google Scholar 

  16. Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum boolean circuits. Eng. Lett. 16, 1–5 (2008)

    ADS  Google Scholar 

  17. Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 073,043 (2011). http://stacks.iop.org/1367-2630/13/i=7/a=073043

  18. Laforest, M., Simon, D., Boileau, J.C., Baugh, J., Ditty, M., Laflamme, R.: Using error correction to determine the noise model. Phys. Rev. A 75, 133–137 (2007)

    Article  Google Scholar 

  19. Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: Design, Automation and Test in Europe, pp. 1208–1213 (2005)

  20. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)

  21. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control toffolli gates. In: International Symposium on Multi-Valued Logic, pp. 288–293 (2011)

  22. Mottonen, M., Vartiainen, J.J.: Decompositions of general quantum gates. Ch. 7 in Trends in Quantum Computing Research, NOVA Publishers, New York (2006). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/05%04100

  23. Muthukrishnan, A., Stroud, C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62, 052,309 (2000)

    Article  MathSciNet  Google Scholar 

  24. Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat Commun. 4, 1756 (2013)

    Article  ADS  Google Scholar 

  25. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85, 062,318 (2012). doi:10.1103/PhysRevA.85.062318

    Google Scholar 

  27. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  28. Saeedi, M., Sedighi, M., Zamani, M.S.: A novel synthesis algorithm for reversible circuits. In: International Conference on CAD, pp. 65–68 (2007)

  29. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sasanian, Z., Miller, D.M.: Transforming MCT circuits to NCVW circuits. In: Reversible Computation 2011. Lecture Notes in Computer Science vol. 7165, pp. 77–88 (2012)

  31. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conference, pp. 36–41 (2012)

  32. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. CAD 22(6), 710–722 (2003)

    Article  Google Scholar 

  33. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Found. Comput. Sci. pp. 124–134 (1994)

  34. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: An Open Source Toolkit for the Design of Reversible Circuits. In: Reversible Computation 2011, Lecture Notes in Computer Science, vol. 7165, pp. 64–76 (2012). RevKit is available at www.revkit.org

  35. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conference, pp. 85–92 (2012)

  36. Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.) Automata, Languages and Programming, p. 632. Springer, Technical Memo MIT/LCS/TM-151. MIT Lab. for Comput, Sci (1980)

  37. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275 (2009)

  38. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium on Multi-Valued Logic, pp. 220–225 (2008). RevLib is available at http://www.revlib.org

  39. Wille, R., Offermann, S., Drechsler, R.: SyReC: a programming language for synthesis of reversible circuits. In: Forum on Specification and Design Languages, pp. 184–189 (2010)

  40. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022,306 (2013). doi:10.1103/PhysRevA.87.022306

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the reviewers for their thorough consideration of the manuscript and many comments that helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wille, R., Lye, A. & Drechsler, R. Considering nearest neighbor constraints of quantum circuits at the reversible circuit level. Quantum Inf Process 13, 185–199 (2014). https://doi.org/10.1007/s11128-013-0642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0642-5

Keywords

Navigation