Skip to main content

Advertisement

Log in

Complete state analysis for four-qubit systems with optical property of quantum dots inside one-side optical microcavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a way for analyzing the cluster states of four-qubit systems completely, resorting to the interaction between the photon and the electron spin in a quantum dot embedded inside a one-side optical microcavity. With parity-check quantum nondemolition detectors based on nonlinearity, single-qubit operations, single-photon detectors, and linear optical elements, the 16 orthogonal cluster states for four-qubit systems can be distinguished completely. We discuss not only the analysis for the cluster states of four-photon systems, but also for those of electron spin systems. Our calculation shows that the fidelity of the four-qubit cluster-state analysis is high when the side leakage rate of the microcavity is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  6. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  11. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  13. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  16. Vaidman, L., Yoran, N.: Methods for reliable teleportation. Phys. Rev. A 59, 116 (1999)

    Article  ADS  Google Scholar 

  17. Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  18. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  19. van Houwelingen, J.A.W., Brunner, N., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96, 130502 (2006)

    Article  MathSciNet  Google Scholar 

  20. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: quantum teleportation across the danube. Nature (London) 430, 849 (2004)

    Google Scholar 

  21. Kwiat, P.G., Weinfurter, H.: Embedded Bell-state analysis. Phys. Rev. A 58, R2623 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  22. Walborn, S.P., \(\acute{{\rm P}}\)adua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Google Scholar 

  23. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  24. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)

    Article  ADS  Google Scholar 

  25. Pavic̆ić, M.: Near-deterministic discrimination of all Bell states with linear optics. Phys. Rev. Lett. 107, 080403 (2011)

    Google Scholar 

  26. Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011)

    Article  ADS  Google Scholar 

  27. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  28. Kaszlikowski, D., Kwek, L.C., Chen, J.L., Żukowski, M., Oh, C.H.: Clauser-Horne inequality for three-state systems. Phys. Rev. A 65, 032118 (2002)

    Article  ADS  Google Scholar 

  29. Lange, W., Kimble, H.J.: Dynamic generation of maximally entangled photon multiplets by adiabatic passage. Phys. Rev. A 61, 063817 (2000)

    Article  ADS  Google Scholar 

  30. Xia, Y., Song, J., Song, H.S.: Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors. Appl. Phys. Lett. 92, 021127 (2008)

    Article  ADS  Google Scholar 

  31. Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)

    Article  ADS  Google Scholar 

  32. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J., Haroche, S.: Step-by-step engineered multiparticle entanglement. Science 288, 2024 (2000)

    Article  ADS  Google Scholar 

  33. Bose, S., Knight, P.L., Plenio, M.B., Vedral, V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158 (1999)

    Article  ADS  Google Scholar 

  34. Zou, X., Pahlke, K., Mathis, W.: Conditional generation of the Greenberger–Horne–Zeilinger state of four distant atoms via cavity decay. Phys. Rev. A 68, 024302 (2003)

    Article  ADS  Google Scholar 

  35. Barrett, S.D., Kok, P.: Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310(R) (2005)

  36. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  37. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  38. Zhang, X.L., Feng, M., Gao, K.L.: Cluster-state preparation and multipartite entanglement analyzer with fermions. Phys. Rev. A 73, 014301 (2006)

    Article  ADS  Google Scholar 

  39. Yu, T., Zhu, A.D., Zhang, S., Yeon, K.H., Yu, S.C.: Deterministic controlled-phase gate and preparation of cluster states via singly charged quantum dots in cavity quantum electrodynamics. Phys. Scr. 84, 025001 (2011)

    Article  ADS  Google Scholar 

  40. Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  41. Qian, J., Feng, X.L., Gong, S.Q.: Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection. Phys. Rev. A 72, 052308 (2005)

    Article  ADS  Google Scholar 

  42. Qian, J., Qian, Y., Feng, X.L., Yang, T., Gong, S.Q.: Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system. Phys. Rev. A 75, 032309 (2007)

    Article  ADS  Google Scholar 

  43. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  44. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    Article  ADS  Google Scholar 

  45. Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21, 17671 (2013)

    Article  ADS  Google Scholar 

  46. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatialpolarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    Article  ADS  Google Scholar 

  47. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  48. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  49. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  50. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664 (2012)

    Article  ADS  Google Scholar 

  51. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  52. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30 (2013)

    Article  ADS  Google Scholar 

  53. Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282 (1997)

    Article  ADS  Google Scholar 

  54. Hu, C.Y., Ossau, W., Yakovlev, D.R., Landwehr, G., Wojtowicz, T., Karczewski, G., Kossut, J.: Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas. Phys. Rev. B 58, R1766 (1998)

    Article  ADS  Google Scholar 

  55. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  56. Borri, P., Langbein, W., Schneider, S., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)

    Article  ADS  Google Scholar 

  57. Birkedal, D., Leosson, K., Hvam, J.M.: Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001)

    Article  ADS  Google Scholar 

  58. Langbein, W., Borri, P., Woggon, U., Stavarache, V., Reuter, D., Wieck, A.D.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)

    Article  ADS  Google Scholar 

  59. Heiss, D., Schaeck, S., Huebl, H., Bichler, M., Abstreiter, G., Finley, J.J., Bulaev, V., Loss, D.: Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306(R) (2007)

  60. Gerardot, B.D., Brunner, D., Dalgarno, P.A., Öhberg, P., Seidl, S., Kroner, M., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: Optical pumping of a single hole spin in a quantum dot. Nature (London) 451, 441 (2008)

    Google Scholar 

  61. Brunner, D., Gerardot, B.D., Dalgarno, P.A., Wüst, G., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: A coherent single-hole spin in a semiconductor. Science 325, 70 (2009)

    Article  ADS  Google Scholar 

  62. Reithmaier, J.P., Sȩk, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197 (2004)

    Google Scholar 

  63. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature (London) 432, 200 (2004)

    Google Scholar 

  64. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11174039, NECT-11-0031, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Guo Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, BC., Wei, HR., Hua, M. et al. Complete state analysis for four-qubit systems with optical property of quantum dots inside one-side optical microcavities. Quantum Inf Process 13, 355–369 (2014). https://doi.org/10.1007/s11128-013-0655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0655-0

Keywords