Skip to main content
Log in

Efficient protocol of \(N\)-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the one- and two-qubit gates defined and generated via superconducting transmon qubits homogeneously coupled to a superconducting stripline resonator, we present a new physical protocol for implementing an \(N\)-bit discrete quantum Fourier transform. We propose and illustrate a detailed experimental feasibility for realizing the algorithm. The average fidelity is computed to prove the success of this algorithm. Estimated time for implementing the protocol using the proposed scheme is compared with previous schemes. Estimates show that the protocol can be successfully implemented within the present experimental limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Schumacher, B.: Quantum coding. Phys. Rev. A. 51, 2738–2747 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lov K. Grover.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212–219 (1996)

  5. Lloyd, S.: Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Deutsch, D., Josza, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 439, 553–558 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) Foundations of Computer Science, IEEE Computer Society Press 35, pp. 124–134 (1994)

  8. Kitaev, AYu.: Quantum measurements and the abelian stabilizer problem. Electron. Colloquium Comput. Complex. 3, 1–22 (1996)

    Google Scholar 

  9. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyer, M., Brassard, G., Hoyer, P., Tapp, A.: Tight bounds on quantum searching. Fortsch. Phys. 46, 493–505 (1998)

    Article  ADS  Google Scholar 

  11. Wang, H.F., Zhu, A.D., Zhang, S.: Physical optimization of quantum error correction circuits with spatially separated quantum dot spins. Opt. Express 21, 12484–12494 (2013)

    Article  ADS  Google Scholar 

  12. Obadaa, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, Ali H.: Quantum logic gates generated by SC-charge qubits coupled to a resonator. J. Phys. A Math. Theor. 45, 485305 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Obadaa, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, Ali H.: A proposal for the realization of universal quantum gates via superconducting qubits inside a cavity. Ann. Phys. 334, 47–57 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    Article  ADS  Google Scholar 

  15. Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889–1891 (2001)

    Article  ADS  Google Scholar 

  16. Scully, M.O., Zubairy, M.S.: Cavity QED implementation of the discrete quantum Fourier transform. Phys. Rev. A 65, 052324 (2002)

    Article  ADS  Google Scholar 

  17. Wang, H.F., Zhang, S., Yeon, K.H.: Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics. J. Korean Phys. Soc. 53, 1787–1790 (2008)

    Google Scholar 

  18. Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)

    Article  ADS  Google Scholar 

  19. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)

    Article  ADS  Google Scholar 

  20. Howell, J.C., Yeazell, J.A.: Reducing the complexity of linear optics quantum circuits. Phys. Rev. A 61, 052303 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  21. Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    Article  ADS  Google Scholar 

  22. Wang, H.-F., Jiang, X.-X., Zhang, S., Yeon, K.-H.: Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits. J. Phys. B At. Mol. Opt. Phys. 44, 115502 (2011)

    Article  ADS  Google Scholar 

  23. Wang, H.F., Zhang, S., Zhu, A.D., Yeon, K.H.: Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities. J. Opt. Soc. Am. B 29, 1078–1084 (2012)

    Article  ADS  Google Scholar 

  24. Wendin, G., Shumeiko, V.S.: Quantum bits with Josephson junctions (Review Article). Low Temp. Phys. 33, 724 (2007)

    Article  ADS  Google Scholar 

  25. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  26. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  27. Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81, 062323 (2010)

    Article  ADS  Google Scholar 

  28. Devoret, M.H.: Quantum fluctuations in electrical circuits. In: Les Houches Session LXIII, Quantum Fluctuations, (1995)

  29. Koch, J., Yu, T.M.: Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  30. Bishop, Lev S., Chow, J.M., Koch, J., Houck, A.A., Devoret, M.H., Thuneberg, E., Girvin, S.M., Schoelkopf, R.J.: Nonlinear response of the vacuum Rabi resonance. Nat. Phys. 5, 105–109 (2009)

    Article  Google Scholar 

  31. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  32. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120126 (1998)

    Article  Google Scholar 

  33. Eckert, K., Mompart, J., Yi, X.X., Schliemann, J., Bruß, D., Birkl, G., Lewenstein, M.: Quantum computing in optical microtraps based on the motional states of neutral atoms. Phys. Rev. A 66, 042317 (2002)

    Article  ADS  Google Scholar 

  34. Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390393 (1997)

    Article  ADS  Google Scholar 

  35. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbinay, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    Article  ADS  Google Scholar 

  36. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to record their gratitude to the referee for this valuable comments that improved the presentation of the article in many aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Homid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obada, AS.F., Hessian, H.A., Mohamed, AB.A. et al. Efficient protocol of \(N\)-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator. Quantum Inf Process 13, 475–489 (2014). https://doi.org/10.1007/s11128-013-0664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0664-z

Keywords

Navigation