Skip to main content

Advertisement

Log in

Quantum computation in the decoherence-free subspaces with cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme to implement quantum computation in decoherence-free subspaces (DFSs) with four atoms in a single-mode cavity. A four-dimensional DFS is constituted to protect quantum information when the full symmetry of interaction between system and environment is broken in a specific way, and entangling two-qubit logic gates and noncommuting single-qubit gates are implemented in such DFS. The gate fidelity is numerically calculated, and the feasibility of the approximations taken in this work is verified based on the numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  3. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)

    Article  ADS  Google Scholar 

  4. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  5. Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)

    Article  ADS  Google Scholar 

  6. Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Decoherence-free subspaces for multiple-qubit errors: I. Characterization. Phys. Rev. A 63, 022306 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  7. Shabani, A., Lidar, D.A.: Theory of initialization-free decoherence-free subspaces and subsystems. Phys. Rev. A 72, 042303 (2005)

    Google Scholar 

  8. Brion, E., Pedersen, L.H., Mølmer, K., Chutia, S., Saffman, M.: Universal quantum computation in a neutral-atom decoherence-free subspace. Phys. Rev. A 75, 032328 (2007)

    Article  ADS  Google Scholar 

  9. Aolita, L., Davidovich, L., Kim, K., Häffner, H.: Universal quantum computation in decoherence-free subspaces with hot trapped ions. Phys. Rev. A 75, 052337 (2007)

    Article  ADS  Google Scholar 

  10. Brown, K.R., Vala, J., Whaley, K.B.: Scalable ion trap quantum computation in decoherence-free subspaces with pairwise interactions only. Phys. Rev. A 67, 012309 (2003)

    Article  ADS  Google Scholar 

  11. Cen, L.-X., Wang, Z.D., Wang, S.J.: Scalable quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 032321 (2006)

    Article  ADS  Google Scholar 

  12. Zhang, X.D.: Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 034302 (2006)

    Google Scholar 

  13. Wu, C.F., Feng, X.-L., Yi, X.X., Chen, I.M., Oh, C.H.: Quantum gate operation in the decoherence free subspace of SQUID. Phys. Rev. A 78, 062321 (2008)

    Article  ADS  Google Scholar 

  14. Brion, E., Pedersen, L.H., MØlmer, K.: Universal quantum computation in a neutral-atom decoherence-free subspace. Phys. Rev. A 75, 032328 (2007)

    Article  ADS  Google Scholar 

  15. Feng, X.-L., Wu, C.F., Sun, H., Oh, C.H.: Geometric entangling gates in decoherence-free subspaces with minimal requirements. Phys. Rev. Lett. 103, 200501 (2009)

    Article  ADS  Google Scholar 

  16. Chen, Y.-Y., Feng, X.-L., Oh, C.H.: Geometric entangling gates for coupled cavity system in decoherence-free subspaces. Opt. Commun. 285, 5554 (2012)

    Article  ADS  Google Scholar 

  17. James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschritte Der Physik (Prog. Phys.) 48, 823 (2000)

    Google Scholar 

  18. Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  19. McKeever, J., Buck, J.R., Boozer, A.D., et al.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)

    Article  ADS  Google Scholar 

  20. Dubin, F., Russo, C., Barros, H.G., Stute, A., Becher, C., Schmidt, P.O., Blatt, R.: Quantum to classical transition in a single-ion laser. Nature Phys. 6, 350 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC under Grant No. 11074079, the Ph.D. Programs Foundation of Ministry of Education of China, and National Research Foundation and Ministry of Education, Singapore, under research Grant No. WBS: R-710-000-008-271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-Li Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YY., Feng, XL. & Oh, C.H. Quantum computation in the decoherence-free subspaces with cavity QED. Quantum Inf Process 13, 547–557 (2014). https://doi.org/10.1007/s11128-013-0671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0671-0

Keywords