Abstract
We present a scheme to implement quantum computation in decoherence-free subspaces (DFSs) with four atoms in a single-mode cavity. A four-dimensional DFS is constituted to protect quantum information when the full symmetry of interaction between system and environment is broken in a specific way, and entangling two-qubit logic gates and noncommuting single-qubit gates are implemented in such DFS. The gate fidelity is numerically calculated, and the feasibility of the approximations taken in this work is verified based on the numerical calculations.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)
Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)
Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Decoherence-free subspaces for multiple-qubit errors: I. Characterization. Phys. Rev. A 63, 022306 (2001)
Shabani, A., Lidar, D.A.: Theory of initialization-free decoherence-free subspaces and subsystems. Phys. Rev. A 72, 042303 (2005)
Brion, E., Pedersen, L.H., Mølmer, K., Chutia, S., Saffman, M.: Universal quantum computation in a neutral-atom decoherence-free subspace. Phys. Rev. A 75, 032328 (2007)
Aolita, L., Davidovich, L., Kim, K., Häffner, H.: Universal quantum computation in decoherence-free subspaces with hot trapped ions. Phys. Rev. A 75, 052337 (2007)
Brown, K.R., Vala, J., Whaley, K.B.: Scalable ion trap quantum computation in decoherence-free subspaces with pairwise interactions only. Phys. Rev. A 67, 012309 (2003)
Cen, L.-X., Wang, Z.D., Wang, S.J.: Scalable quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 032321 (2006)
Zhang, X.D.: Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 034302 (2006)
Wu, C.F., Feng, X.-L., Yi, X.X., Chen, I.M., Oh, C.H.: Quantum gate operation in the decoherence free subspace of SQUID. Phys. Rev. A 78, 062321 (2008)
Brion, E., Pedersen, L.H., MØlmer, K.: Universal quantum computation in a neutral-atom decoherence-free subspace. Phys. Rev. A 75, 032328 (2007)
Feng, X.-L., Wu, C.F., Sun, H., Oh, C.H.: Geometric entangling gates in decoherence-free subspaces with minimal requirements. Phys. Rev. Lett. 103, 200501 (2009)
Chen, Y.-Y., Feng, X.-L., Oh, C.H.: Geometric entangling gates for coupled cavity system in decoherence-free subspaces. Opt. Commun. 285, 5554 (2012)
James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschritte Der Physik (Prog. Phys.) 48, 823 (2000)
Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)
McKeever, J., Buck, J.R., Boozer, A.D., et al.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)
Dubin, F., Russo, C., Barros, H.G., Stute, A., Becher, C., Schmidt, P.O., Blatt, R.: Quantum to classical transition in a single-ion laser. Nature Phys. 6, 350 (2010)
Acknowledgments
This work is supported by the NSFC under Grant No. 11074079, the Ph.D. Programs Foundation of Ministry of Education of China, and National Research Foundation and Ministry of Education, Singapore, under research Grant No. WBS: R-710-000-008-271.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, YY., Feng, XL. & Oh, C.H. Quantum computation in the decoherence-free subspaces with cavity QED. Quantum Inf Process 13, 547–557 (2014). https://doi.org/10.1007/s11128-013-0671-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0671-0