Abstract
We propose to use a simple and effective way to achieve secure quantum direct secret sharing. The proposed scheme uses the properties of fountain codes to allow a realization of the physical conditions necessary for the implementation of no-cloning principle for eavesdropping-check and authentication. In our scheme, to achieve a variety of security purposes, nonorthogonal state particles are inserted in the transmitted sequence carrying the secret shares to disorder it. However, the positions of the inserted nonorthogonal state particles are not announced directly, but are obtained by sending degrees and positions of a sequence that are pre-shared between Alice and each Bob. Moreover, they can confirm that whether there exists an eavesdropper without exchanging classical messages. Most importantly, without knowing the positions of the inserted nonorthogonal state particles and the sequence constituted by the first particles from every EPR pair, the proposed scheme is shown to be secure.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of National Computer Conference, vol. 48, pp. 313–317. AFI-PS Press, Montvale, NJ (1979)
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)
Deng, F.G., Zhou, H.Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A. 337, 329–334 (2005)
Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Phys. Lett. A. 340, 43–50 (2005)
Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A Math Gen. 39, 14089–14099 (2006)
Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci China. Phys. Mech. Astron. 53(3), 491–495 (2010)
Rupert, U., Richard, H.: Quantum information: Sharing quantum secrets. Nature. 501, 37 (2013)
Lin, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82, 022303–022308 (2010)
Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A. 61, 042311–042318 (2000)
Song, S.Y., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57(36), 4694–4700 (2012)
Tsai, C.W., Hwang, T.: Multiparty quantum secret sharing based on two special entangled states. Sci China Phys. Mech. Astron. 3, 460–464 (2012)
Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci China Phys. Mech. Astron. 55(10), 1828–1831 (2012)
Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)
Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A. 71, 044301–044306 (2005)
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A. 72, 022303–022306 (2005)
Zhang, Z.J.: Multiparty secret sharing of quantum information via cavity QED. Opt. Commun. 261, 199–202 (2006)
Zhang, Z.J.: Multiparty quantum secret sharing based on the improved Boström-Felbinger protocol. Opt. Commun. 269, 418–422 (2007)
Zhang, Z.J.: Multiparty quantum secret sharing scheme of classical messages by swapping qudit-state entanglement. Int. J. Mod. Phys. C. 18, 1885–1901 (2007)
Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639–3642 (2011)
Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21, 16664–16669 (2013)
Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)
Anderson, C.A.N., Joern, M.Q., Hideki, I.: Improving quantum secret sharing schemes. Phys. Rev. A. 64, 042311–042315 (2001)
Gheorghiu, V.: Generalized semiquantum secret sharing schemes. Phys. Rev. A. 85, 052309–052319 (2012)
Fortescue, B., Gour, G.: Reducing the quantum communication cost of quantum secret sharing. IEEE Trans. Inf. Theory 58(10), 6659–6666 (2012)
Sarvepalli, P., Raussendorf, R.: Matroids and quantum-secret-sharing scheme. Phys. Rev. A. 81, 052333–052341 (2010)
Dehkordi, M.H., Fattahi, E.: Threshold quantum secret sharing between multiparty and multiparty using Greenberger-Horne-Zeilinger. Quantum Inf. Process. 12, 1299–1306 (2013)
Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n) threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)
Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process. 12, 55–68 (2013)
Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46, 045304–045314 (2013)
Nie, Y.Y., Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12, 437–448 (2013)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302–032304 (2002)
Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Physica A. 101, 357–370 (2002)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902–187906 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003)
Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A. 342, 60–66 (2005)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Gui, L.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, 044305–044308 (2005)
Li, B.K., Yang, Y.G., Wen, Q.Y.: Threshold quantum secret sharing of secure direct communication. Chin. Phys. Lett. 26(1), 010302–010306 (2009)
Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690–2694 (2008)
Du, R.G., Sun, Z.W., Wang, B.H., Long, D.Y.: Quantum secret sharing of secure direct communication using one-time pad. Int. J. Theor. Phys. 51, 2727–2736 (2012)
Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: Martha Steenstrup (Ed.) Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ’98). ACM, New York, NY, USA, (1998)
Lin, Y., Liang, B., Li, B.: Data Persistence in Large-Scale Sensor Networks with Decentralized Fountain Codes. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 6–12 May 2007, pp. 1658–1666. IEEE, Anchorage, Alaska, USA (2007)
Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)
Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)
Acknowledgments
The authors are grateful to the two anonymous referees for their valuable comments and suggestions which helped improve the presentation of this paper. Hong Lai has been supported in part by an International Macquarie University Research Excellence Scholarship (iMQRES). This work is also supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB923200), the National Natural Science Foundation of China (No. 61377067). The work is also supported by Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), P. R. China.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lai, H., Xiao, J., Orgun, M.A. et al. Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf Process 13, 895–907 (2014). https://doi.org/10.1007/s11128-013-0699-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0699-1