Skip to main content

Advertisement

Log in

Key-leakage evaluation of authentication in quantum key distribution with finite resources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Partial information leakages of generation key undoubtedly influence the security of practical Quantum Key Distribution (QKD) system. In this paper, based on finite-key analysis and deep investigation on privacy amplification, we present a method for characterizing information leakages gained by adversary in each authentication round and therefore take the theory derived by Cederlöf and Larsson (IEEE Trans Inf Theory 54:1735–1741, 2008) into practical case. As the authentication key is fed from one round of generation keys to the next except the first round, by considering its security weakness due to information leakages and finite size effect, we further propose a universal formula for calculating the lifetime of initial authentication key used in QKD with finite resources. Numerical simulations indicate that our bound for estimating information leakages strictly characterizes the stability of practical QKD against information-leakage-based attacks, and our calculation formula in terms of lifetime can precisely evaluate the usage time of initial authentication key. Our work provides a practical solution for evaluating authentication security of QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  2. Lo, Hoi-Kwong, Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Shor, W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  4. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(1), 1–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95(8), 080501 (2005)

    Article  ADS  Google Scholar 

  6. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  7. Gottesman, D., Lo, H.-K., Lukenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  9. Wang, X.-B.: Beating the PNS attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  10. Cederlöf, J., Larsson, J.-Ä.: Security aspects of the authentication used in quantum cryptography. IEEE Trans. Inf. Theory 54(4), 1735–1741 (2008)

    Article  Google Scholar 

  11. Fung, C.-H.F., Tamaki, K., Qi, B., Lo, H.-K., Ma, X.: Security proof of quantum key distribution with detection efficiency. Quantum Inf. Comput. 9(1–2), 0131–0165 (2009)

    MathSciNet  Google Scholar 

  12. Portmann, C.: Key recycling in authentication. arxiv: quant-ph/1202.1229v2 (2012)

  13. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  14. Lydersen, L., Skaar, J.: Security of quantum key distribution with bit and basis dependent detector flaws. Quantum Inf. Comput. 10(1–2), 60–76 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Zhou, C., Bao, W.S., Fu, X.Q.: Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations. Sci. China Inf. Sci. 53(12), 2485–2494 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fung, C.-H.F., Ma, X., Chau, H.F.: Practical issues in quantum-key-distribution postprocessing. Phys. Rev. A 81(1), 012318 (2010)

    Article  ADS  Google Scholar 

  17. Marøy, Ø., Lydersen, L., Skaar, J.: Security of quantum key distribution with arbitrary individual imperfections. Phys. Rev. A 82(3), 032337 (2010)

    Article  ADS  Google Scholar 

  18. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stinson, D.R.: Universal hashing and authentication codes, in advances in cryptology. In: Feigenbaum, J. (ed.) Proceedings of Crypto’91, Ser. Lecture Notes in Computer Science, vol. 576. Berlin, Springer, Germany. pp. 74–85 (1991)

  20. Abidin, A., Larsson, J.-Ä.: Security of authentication with a fixed key in quantum key distribution. arxiv: quant-ph/1109.5168v1 (2011)

  21. Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008)

    Article  ADS  Google Scholar 

  22. König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009)

    Article  Google Scholar 

  23. Bratzik, S., Mertz, M., Kampermann, H., Bruß, D.: Min-entropy and quantum key distribution: nonzero key rates for ”small” numbers of signals. Phys. Rev. A 83, 022330 (2011)

    Article  ADS  Google Scholar 

  24. Christandl, M., König, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102(2), 020504 (2009)

    Article  ADS  Google Scholar 

  25. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106(11), 110506 (2011)

    Article  ADS  Google Scholar 

  26. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012). doi:10.1038/ncomms1631

    Article  ADS  Google Scholar 

  27. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(60), 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muller-Quade, J., Renner, R.: Composability in quantum cryptography. New J. Phys. 11(8), 085006 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. Krawczyk, H.:LFSR-based hashing and authentication. In: Advances in Cryptology: CRYPTO’94, Lecture Notes in Computer Science vol. 893, pp. 129–139. Springer (1994)

Download references

Acknowledgments

The authors would like to thank Xiong-Feng Ma for valuable and enlightening discussions. They gratefully acknowledge the financial support from the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant No. 11304397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Su Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Bao, WS., Li, HW. et al. Key-leakage evaluation of authentication in quantum key distribution with finite resources. Quantum Inf Process 13, 935–955 (2014). https://doi.org/10.1007/s11128-013-0703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0703-9

Keywords