Skip to main content
Log in

Multi-qudit information splitting with multiple controllers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we first present a five-party scheme for sharing a single-qutrit state by using GHZ states as the quantum channel. Any one of the agents has the access to reconstruct the original state if other controlling agents cooperate with him. We also sketch the generation of five-party scheme to the case of multi-qudit states and multiple participants by a composite channel composed of generalized Bell states and GHZ states. In our scheme, the physical operations, especially for the controllers and the final receiver, are considerably reduced. It also demonstrates a high degree of symmetry and provides a useful inspiration for implementing hierarchical quantum information splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blakley, G.R.: Proceedings of the American Federation of Information Processing 1979 National Computer Conference (American Federation of Information Processing, Arlington, VA, 1979), 313–317, A. Shamir, Commun. ACM 22, 612 (1979)

  2. Cleve, R., Cleve, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  3. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. Ding, D.S., et al.: Storing high-dimensional quantum states in a cold atomic ensemble al. quant-ph:/1310.3092 (2013)

  6. Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73(6), 062316 (2006)

    Article  ADS  Google Scholar 

  7. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Google Scholar 

  8. Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961–1965 (2010)

    Article  ADS  Google Scholar 

  9. Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multi-qubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jian, D., Jian, F.T., Shu, Y.W.: Controlled teleportation of multi-qudit quantum information by entanglement swapping. Commun. Theor. Phys. 51(5), 823 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Jiang, M., et al.: Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels. Phys. A 390, 760–768 (2011)

    Article  Google Scholar 

  12. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524–2530 (2013)

    Google Scholar 

  13. Jimenez, O., Munoz, C., Klimov, A.B., et al.: Sharing of d-dimensional quantum states. Int. J. Quantum Inf. 10(02) (2012)

  14. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Google Scholar 

  15. Kim, J., et al.: Qudit communication network. Proc. SPIE 8518, 85180B (2013)

    Article  Google Scholar 

  16. Lance, A.M., et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  17. Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B: At. Mol. Opt. Phys. 39(8), 1975 (2006)

    Article  ADS  Google Scholar 

  18. Li, Y.M.: Generation of qudits and entangled qudits. Phys. Rev. A 77, 015802 (2008)

    Article  ADS  Google Scholar 

  19. Man’ko, M.A.: Information and entropic characteristics of photon and qudit quantum states. Phys. Scr. T140, 014027 (2010)

    Google Scholar 

  20. Mischuck, B., Mølmer, K.: Qudit quantum computation in the Jaynes–Cummings model. Phys. Rev. A 87, 022341 (2013)

    Article  ADS  Google Scholar 

  21. Muralidharan, S., et. al.: Ultrafast and Fault-Tolerant Quantum Communication across Long Distances. quantph:/ 1310.5291 (2013)

  22. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  23. Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 48(2), 279–284 (2008)

    Article  ADS  Google Scholar 

  25. Shi, R.H., Huang, L.S., Yang, W., et al.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10(2), 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi, R.H., et al.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50(11), 3329–3336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z., Liu, Y., Wang, D., et al.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276(2), 322–326 (2007)

    Article  ADS  Google Scholar 

  28. Wang, Z.Y., Yuan, H., Shi, S.H., et al.: Three-party qutrit-state sharing. Eur Phys J D 41(2), 371–375 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  29. Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrary-qudit state with two-qudit entanglements and generalized Bell-state measurements. Phys. A: Stat. Mech. Appl. 387(18), 4716–4722 (2008)

    Article  MathSciNet  Google Scholar 

  30. Wang, X.W., et al.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44, 035505 (2011)

    Article  ADS  Google Scholar 

  31. Xue, Z.Y., et al.: Quantum state sharing via the GHZ state in cavity QED without joint measurement. Int. J. Quantum Inf. 4(5), 749–759 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61104002 and 11375259), the Natural Science Foundation of Jiangsu Province (No. BK2011283), and the project on the Integration of Industry, Education and Research of Jiangsu Province (No. BY2012110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SW., Jiang, M., Jiang, F. et al. Multi-qudit information splitting with multiple controllers. Quantum Inf Process 13, 1057–1066 (2014). https://doi.org/10.1007/s11128-013-0711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0711-9

Keywords

Navigation