Skip to main content
Log in

Three schemes of remote information concentration based on ancilla-free phase-covariant telecloning

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, remote information concentration is investigated which is the reverse process of the \(1\rightarrow 3\) optimal asymmetric economical phase-covariant telecloning (OAEPCT). The OAEPCT is different from the reverse process of optimal universal telecloning. It is shown that the quantum information via \(1\rightarrow 3\) OAEPCT procedure can be remotely concentrated back to a single qubit with a certain probability via several quantum channels. In these schemes, we adopt Bell measurement to measure the joint systems and use projected measurement and positive operator-valued measure to recover the original quantum state. The results shows non-maximally entangled quantum resource can be applied to information concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  2. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  3. Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bužek, V., Hillery, M.: Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bruß, D., Calsamiglia, J., Lütkenhaus, N.: Quantum cloning and distributed measurements. Phys. Rev. A 63, 042308 (2001)

    Article  ADS  Google Scholar 

  6. Galvao, E.F., Hardy, L.: Cloning and quantum computation. Phys. Rev. A 62, 022301 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. Ricci, M., Sciarrino, F., Cerf, N.J., Filip, R., Fiurášek, J., De Martini, F.: Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005)

    Article  ADS  Google Scholar 

  8. Lamoureux, L.P., Bechmann-Pasquinucci, H., Cerf, N.J., Gisin, N., Macchiavello, C.: Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis. Phys. Rev. A 73, 032304 (2006)

    Article  ADS  Google Scholar 

  9. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Murao, M., Plenio, M.B., Vedral, V.: Quantum-information distribution via entanglement. Phys. Rev. A 61, 032311 (2000)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Ghiu, I.: Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the many-to-many communication protocol. Phys. Rev. A 67, 012323 (2003)

    Article  ADS  Google Scholar 

  13. Wang, X.W., Yang, G.J.: Probabilistic ancilla-free phase-covariant telecloning of qudits with the optimal fidelity. Phys. Rev. A 79, 064306 (2009)

    Article  ADS  Google Scholar 

  14. Wang, X.W., Su, Y.H., Yang, G.J.: One-to-many economical phase-covariant cloning and telecloning of qudits. Chin. Phys. Lett. 27(10), 100303 (2010)

    Article  ADS  Google Scholar 

  15. Ghiu, I., Karlsson, A.: Broadcasting of entanglement at a distance using linear optics and telecloning of entanglement. Phys. Rev. A 72, 032331 (2005)

    Article  ADS  Google Scholar 

  16. Chen, L., Chen, Y.X.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 716 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Wang, X.W., Yang, G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315 (2009)

    Article  ADS  Google Scholar 

  18. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  19. Bennet, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Bennet, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)

    Article  ADS  Google Scholar 

  23. Vedral, V., Plenio, M.B.: Basics of quantum computation. Prog. Quantum Electron. 22, 1 (1998)

    Article  ADS  Google Scholar 

  24. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  26. Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  27. Luo, M.X., Peng, J.Y., Mo, Z.W.: Joint remote preparation of an arbitrary five-qubit Brown state. Int. J. Theor. Phys. 52(2), 644–653 (2013)

    Article  MATH  Google Scholar 

  28. Murao, M., Vedral, V.: Remote information concentration using a bound entangled state. Phys. Rev. Lett. 86, 352 (2001)

    Article  ADS  Google Scholar 

  29. Yu, Y.F., Feng, J., Zhan, M.S.: Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state. Phys. Rev. A 68, 024303 (2003)

    Article  ADS  Google Scholar 

  30. Chen, Y.H., Yu, Y.F., Zhang, Z.M.: Entangled states used in remote information concentration and their properties. Chin. Phys. Lett. 23(12), 3158–3160 (2006)

    Article  ADS  Google Scholar 

  31. Chen, Y.H., Zhang, D.Y., Gao, F., Zhan, X.G.: Remote information concentration via a four-particle cluster state. Chin. Phys. Lett. 26, 090304 (2009)

    Article  ADS  Google Scholar 

  32. Augusiak, R., Horodecki, P.: Generalized Smolin states and their properties. Phys. Rev. A 73, 012318 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  33. Wang, X.W., Zhang, D.Y., Yang, G.J., Tang, S.Q., Xie, L.J.: Remote information concentration and multipartite entanglement in multilevel systems. Phys. Rev. A 84, 042310 (2011)

    Article  ADS  Google Scholar 

  34. Hsu, L.Y.: Remote one-qubit information concentration and decoding of operator quantum error-correction codes. Phys. Rev. A 76, 032311 (2007)

    Article  ADS  Google Scholar 

  35. Song, Q.M., Ye, L.: Scheme to implement optimal asymmetric economical \(1\rightarrow 3\) phase-covariant telecloning via cavity QED. Chin. Phys. B 19, 080309 (2010)

    Article  ADS  Google Scholar 

  36. Chen, L.B., Du, Q.H., Lin, G.W., Chen, Z.H., Liu, X.M.: Preparation of \(n\)-atom GHZ state and implementation of quantum-state transfer via cavity decay. Commun. Theor. Phys. 49, 655 (2008)

    Article  Google Scholar 

  37. Zheng, X.J., Xu, H., Fang, M.F., Zhu, K.C.: Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system. Chin. Phys. B 19, 034207 (2010)

    Article  ADS  Google Scholar 

  38. Du, G., Lai, B.H., Yu, Y.F., Zhang, Z.M.: Schemes for generating cluster states via cavity systems. Chin. Phys. Lett. 26, 104201 (2009)

    Article  ADS  Google Scholar 

  39. Reichle, R., Leibfrie, D., Knill, E., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Experimental purification of two-atom entanglement. Nature 443, 838 (2006)

    Article  ADS  MATH  Google Scholar 

  40. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)

    Article  ADS  Google Scholar 

  41. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284(5), 1457–1460 (2011)

    Article  ADS  Google Scholar 

  42. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Euro. Phys. Lett. 87, 60008 (2009)

    Article  ADS  Google Scholar 

  43. Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59(5), 3295–3300 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  44. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  45. Ahnert, S.E., Payne, M.C.: General implementation of all possible positive-operator-value measurements of single-photon polarization states. Phys. Rev. A 71, 012330 (2005)

    Article  ADS  Google Scholar 

  46. Ziman, M., Buzek, V.: Realization of positive-operator-valued measures using measurement-assisted programmable quantum processors. Phys. Rev. A 72, 022343 (2005)

    Article  ADS  Google Scholar 

  47. Ahnert, S.E., Payne, M.C.: All possible bipartite positive-operator-value measurements of two-photon polarization states. Phys. Rev. A 73, 022333 (2006)

    Article  ADS  Google Scholar 

  48. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  49. Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  50. Mor, T.: TelePOVM-New faces of teleportation, arXiv:quant-th/9608005v1 (1996)

  51. Mor, T., Horodecki, P.: Teleportation via generalized measurements, and conclusive teleportation, arXiv:quant-ph/9906039 (1999)

  52. Yan, F.L., Ding, H.W.: Probabilistic Teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure. Chin. Phys. Lett. 23, 17 (2006)

    Article  ADS  Google Scholar 

  53. Wu, J.: Symmetric and probabilistic quantum state sharing via positive operator-valued measure. Int. J. Theor. Phys. 49, 324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, Z.Y.: Symmetric remote single-Qubit state preparation via positive operator-valued measurement. Int. J. Theor. Phys. 49, 1357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Song, J.F., Wang, Z.Y.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410 (2011)

    Article  MATH  Google Scholar 

  56. Zhou, P.: Joint remote preparation of an arbitrary \(m\)-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A 45, 215305 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Huang, S.: Remote state preparation using positive operator-valued measures. Phys. Lett. A 377, 448–451 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  58. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. Euro. Phys. Lett. 87, 30006 (2009)

    Article  ADS  Google Scholar 

  59. Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A 44, 255304 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524–2530 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11071178), the Research Foundation of the Education Department of Sichuan Province (Grant No. 12ZB106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qiang Bai.

Appendices

Appendix 1

The symbols \(|\varsigma _i\rangle ,|\zeta _i\rangle \) and \(|\xi _i\rangle (i=1,2,3,4)\) in Eq. (4) are shown as follows

$$\begin{aligned} |\varsigma _1\rangle&= \left( \alpha |0\rangle +\beta \hbox {e}^{i\theta }|1\rangle \right) _D, |\varsigma _2\rangle =\left( \alpha |0\rangle -\beta \hbox {e}^{i\theta }|1\rangle \right) _D,\\ |\varsigma _3\rangle&= \left( \beta |1\rangle +\alpha \hbox {e}^{i\theta }|0\rangle \right) _D, |\varsigma _4\rangle =\left( \beta |1\rangle -\alpha \hbox {e}^{i\theta }|0\rangle \right) _D,\\ |\zeta _1\rangle&= |\varPhi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPhi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3}\\&\quad -|\varPhi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _2\rangle&= |\varPhi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPhi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3}\\&\quad -|\varPhi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _3\rangle&= |\varPsi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}+|\varPsi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3} -|\varPsi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3}\\&\quad -|\varPsi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\zeta _4\rangle&= |\varPsi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3}+|\varPsi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3} -|\varPsi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}\\&\quad -|\varPsi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\xi _1\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3} -|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3}\\&\quad -|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\xi _2\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3} -|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3}\\&\quad -|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\xi _3\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3} -|\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3}\\&\quad -|\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\xi _4\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3}+|\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3}\\&\quad -|\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3},\\ |\varrho _1\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}+|\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3} -|\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3}\\&\quad -|\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\varrho _2\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}+|\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3} -|\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3} \\&\quad -|\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\varrho _3\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3} -|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3} \\&\quad -|\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\varrho _4\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3}+|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3} \\&\quad -|\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}. \end{aligned}$$

Appendix 2

The symbols \(|\zeta _i\rangle (i=1,2,\ldots ,24)\) in Eq.(16) are shown as follows

$$\begin{aligned} |\zeta _1\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}-|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\zeta _2\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}-|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\zeta _3\rangle&= |\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}-|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\zeta _4\rangle&= |\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}-|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\zeta _5\rangle&= |\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3}-|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3},\\ |\zeta _6\rangle&= |\varPhi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}-|\varPhi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _7\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}-|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3},\\ |\zeta _8\rangle&= |\varPhi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3}-|\varPhi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _9\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}-|\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\zeta _{10}\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}-|\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\zeta _{11}\rangle&= |\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}-|\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\zeta _{12}\rangle&= |\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}-|\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\zeta _{13}\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3}-|\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3},\\ |\zeta _{14}\rangle&= |\varPsi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3}-|\varPsi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _{15}\rangle&= |\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3}-|\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _{16}\rangle&= |\varPsi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3}-|\varPsi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3},\\ |\zeta _{17}\rangle&= |\varPhi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3}\\&-|\varPhi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3}-|\varPhi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\zeta _{18}\rangle&= |\varPhi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3} -|\varPhi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}\\&-|\varPhi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3},\\ |\zeta _{19}\rangle&= |\varPhi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPhi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3} \\&-|\varPhi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3}, \end{aligned}$$
$$\begin{aligned} |\zeta _{20}\rangle&= |\varPhi ^+\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPhi ^-\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPhi ^+\rangle _{A1}|\varPhi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3}\\&-|\varPhi ^-\rangle _{A1}|\varPhi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _{21}\rangle&= |\varPsi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}+|\varPsi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3} -|\varPsi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3}\\&-|\varPsi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\zeta _{22}\rangle&= |\varPsi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^-\rangle _{C3}+|\varPsi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^-\rangle _{C3} -|\varPsi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPhi ^+\rangle _{C3} \\&-|\varPsi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPhi ^+\rangle _{C3},\\ |\zeta _{23}\rangle&= |\varPsi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPsi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPsi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3} \\&-|\varPsi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3},\\ |\zeta _{24}\rangle&= |\varPsi ^+\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^+\rangle _{C3}+|\varPsi ^-\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^+\rangle _{C3} -|\varPsi ^+\rangle _{A1}|\varPsi ^+\rangle _{B2}|\varPsi ^-\rangle _{C3}\\&-|\varPsi ^-\rangle _{A1}|\varPsi ^-\rangle _{B2}|\varPsi ^-\rangle _{C3}. \end{aligned}$$

The symbols \(s_i(i=1,2,\ldots ,8)\) and \(t_i(i=1,2,3,4)\) in Eq.(17) are shown as follows

$$\begin{aligned} s_1&= b\alpha +c\gamma ,s_2=b\alpha -c\gamma ,s_3=b\beta +c\delta ,s_4=b\beta -c\delta ,\\ s_5&= b\gamma +c\alpha ,s_6=b\gamma -c\alpha ,s_7=b\delta +c\beta ,s_8=b\delta -c\beta ,\\ t_1&= a\beta , t_2=a\alpha , t_3=a\delta , t_4=a\gamma . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Mq., Peng, JY. & Mo, ZW. Three schemes of remote information concentration based on ancilla-free phase-covariant telecloning. Quantum Inf Process 13, 1067–1083 (2014). https://doi.org/10.1007/s11128-013-0712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0712-8

Keywords

Navigation