Skip to main content

Advertisement

Log in

Improved key integrity checking for high-speed quantum key distribution using combinatorial group testing with strongly selective family design

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Key integrity checking is a necessary process in practical quantum key distribution (QKD) to check whether there is any error bit escaped from the previous error correction procedure. The traditional single-hash method may become a bottleneck in high-speed QKD since it has to discard all the key bits even if just one error bit exists. In this paper, we propose an improved scheme using combinatorial group testing (CGT) based on strong selective family design to verify key integrity in fine granularity and consequently improve the total efficiency of key generation after the error correction procedure. Code shortening technique and parallel computing are also applied to enhance the scheme’s flexibility and to accelerate the computation. Experimental results show that the scheme can identify the rare error bits precisely and thus avoid dropping the great majority of correct bits, while the overhead is reasonable. For a \(2^{20}\)-bit key, the disclosed information for public comparison is 800 bits (about 0.076 % of the key bits), reducing 256 bits when compared with the previous CGT scheme. Besides, with an Intel® quad-cores CPU at 3.40 GHz and 8 GB RAM, the computational times are 3.0 and 6.3 ms for hashing and decoding, respectively, which are reasonable in real applications and will not cause significant latency in practical QKD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore India, pp. 175–179 (1984)

  2. Zbinden, H., Bechmann-Pasquinucci, H., Gisin, N., Ribordy, G.: Quantum cryptography. Appl. Phys. B 67, 743–748 (1998)

    Article  ADS  Google Scholar 

  3. Buttler, W.T., Lamoreaux, S.K., Torgerson, J.R., Nickel, G.H., Donahue, C.H., Peterson, C.G.: Fast, efficient error reconciliation for quantum cryptography. Phys. Rev. A 67, 052303 (2003)

    Article  ADS  Google Scholar 

  4. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Proceedings of Advances in Cryptology EUROCRYPT 93, Lofthus Norway, pp. 410–423 (1994)

  5. Elkouss, D., Leverrier, A., Alleaume, R., Boutros, Joseph J.: Efficient reconciliation protocol for discrete-variable quantum key distribution. In: Proceedings of IEEE International Symposium on Information Theory (ISIT2009), Seoul, South Korea, pp. 1879–1883 (2009)

  6. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  7. Elliott, C.: Quantum cryptography. IEEE Secur. Priv. 2(4), 57–61 (2004)

    Article  Google Scholar 

  8. Fang, J., Jiang, Z.L., Yiu, S.M., Hui, L.C.K.: Checking key integrity efficiently for high-speed quantum key distribution using combinatorial group testing. Opt. Commun. 284, 531–535 (2011)

    Article  ADS  Google Scholar 

  9. Mink, A., Bienfang, J.C., Carpenter, R., Ma, L., Hershman, B., Restelli, A., Tang, X.: Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems. New J. Phys. 11(4), 045016 (2009)

    Article  ADS  Google Scholar 

  10. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., Yoshino, K., Nambu, Y., Takahashi, S., Tajima, A., Tomita, A., Domeki, T., Hasegawa, T., Sakai, Y., Kobayashi, H., Asai, T., Shimizu, K., Tokura, T., Tsurumaru, T., Matsui, M., Honjo, T., Tamaki, K., Takesue, H., Tokura, Y., Dynes, J.F., Dixon, A.R., Sharpe, A.W., Yuan, Z.L., Shields, A.J., Uchikoga, S., Legr, M., Robyr, S., Trinkler, P., Monat, L., Page, J.B., Ribordy, G., Poppe, A., Allacher, A., Maurhart, O., Länger, T., Peev, M., Zeilinger, A.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)

    Google Scholar 

  11. Austrian Institute of Technology (AIT): QKD post processing workshop 2011. https://sqt.ait.ac.at/software/projects/hipanq/wiki/Workshop_6th_to_8th_July_2011 (2011)

  12. Cui, K., Wang, J., Zhang, H.F., Luo, C.L., Jin, G., Chen, T.Y.: A real-time design based on FPGA for expeditious error reconciliation in QKD system. IEEE Trans. Inf. Foren. Sec. 8(1), 184–190 (2013)

    Article  Google Scholar 

  13. Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14, 436–440 (1943)

    Article  Google Scholar 

  14. Sobel, M., Groll, P.A.: Group testing to eliminate efficiently all defectives in a binomial sample. Bell Syst. Tech. J. 38, 1179–1253 (1959)

    Article  MathSciNet  Google Scholar 

  15. Colbourn, C.J., Dinitz, J.H., Stinson, D.R.: Applications of Combinatorial Designs to Communications, Cryptography, and Networking, Surveys in Combinatorics, pp. 37–100. Cambridge University Press, Cambridge (1999)

  16. Cheng, Y.X., Du, D.-Z.: Efficient constructions of disjunct matrices with applications to dna library screening. J. Comput. Biol. 14, 1208–1216 (2007)

    Article  MathSciNet  Google Scholar 

  17. Bonis, A.D., Vaccaro, U.: Constructions of generalized superimposed codes with applications to group testing and conflict resolution in multiple access channels. Theor. Comput. Sci. 306(1–3), 223–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harvey, N.: Non-adaptive fault diagnosis for all-optical networks via combinatorial group testing on graphs. In: Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM2007), Anchorage Alaska, USA, pp. 697–705 (2007)

  19. Indyk, P.: Explicit constructions for compressed sensing of sparse signals. In: Proceedings of the 19th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’08), San Francisco, USA, pp. 30–33 (2008)

  20. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data forensics. In: Proceedings of the 3rd International Conference on Applied Cryptography and Network Security (ANCS), New York, USA, pp. 206–221(2005)

  21. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications, 2nd edn. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  22. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10, 363–377 (1964)

    Article  MATH  Google Scholar 

  24. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. S. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  25. Amritkar, A., Tafti, D., Liu, R., Kufrin, R., Chapman, B.: OpenMP parallelism for fluid and fluid-particulate systems. Parallel Comput. 38(9), 501–517 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Nature Science Foundation of China (NSFC) (Nos. 61177075 and 61240011), National High-tech R&D Program of China (863 Program) (No. 2013AA013403), Key Technology R&D Project (No. 2012A032300016) and Special Fund for LED Industry (No. 2012A080302004) Of Strategic Emerging Industries Of Guangdong Province, China, Fundamental Research Funds for the Central Universities, China (Nos. 21612437 and 21614313), Guangdong Provincial Natural Science Foundation (No. S2013010015471) and ShenZhen Engineering Lab of Optical Fiber Sensor Networks (SZELOFSN-201301). The authors would also like to acknowledge the help of Dr. Henry C.M. Leung from the Department of Computer Science at The University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Jiang, Z.L., Ren, K. et al. Improved key integrity checking for high-speed quantum key distribution using combinatorial group testing with strongly selective family design. Quantum Inf Process 13, 1425–1435 (2014). https://doi.org/10.1007/s11128-014-0737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0737-7

Keywords