Skip to main content
Log in

Yang–Baxter equations and quantum entanglements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper some results associated with a new type of Yang–Baxter equation (YBE) are reviewed. The braiding matrix of Kauffman–Lomonaco has been extended to the solution (called type-II) of Yang–Baxter equation (YBE) and the related chain Hamiltonian is given. The Lorentz additivity for spectral parameters is found, rather than the Galilean rule for the familiar solutions (called type-I) of YBE associated with the usually exact solvable models. Based on the topological basis, the N-dimensional solution of YBE is found to be the Wigner D-functions. The explicit examples for spin-\(\frac{1}{2}\) and spin-1 have been shown. The extremes of \(\ell _1\)-norm of \(D\)-functions are introduced to distinguish the type-I from type-II of braiding matrices that also correspond to those of von Neumann entropy for quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. McGuire, J.B.: Study of exactly soluble one-dimensional n-body problems. J. Math. Phys. 5, 622 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Yang, C.N.: S matrix for the one-dimensional n-body problem with repulsive or attractive \(\delta \)-function interaction. Phys. Rev. 168, 1920–1923 (1968)

    Article  ADS  Google Scholar 

  4. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Baxter, R.: Exactly Solvable Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  6. Takhtadzhan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. Surv. 34, 11–68 (1979)

    Article  Google Scholar 

  7. Faddeev, L.D.: Quantum completely integrable models in field theory. Sov. Sci. Rev. Sect. C: Math 1, 107–155 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Kulish, P.P., Sklyanin, E.K.: Quantum spectral transform method recent developments. In: Lecture Notes in Physics, vol. 151, pp. 61–119. Springer, Berlin (1982)

  9. Faddeev, L., Henneaus, M., Kashaev, R., Lambert, F., Volkov, K.: Bethe Ansatz: 75 Years Later. Univ. Libre de Bruxelles-Vrjie Univ, Brussel International Salvay Institute for Physics and Chemistry (2006)

  10. Jinbo, M. (ed.): Yang–Baxter Equation in Integrable Systems. World Scientific, Singapore (1990)

  11. Yang, C.N., Ge, M.L. (eds.): Braid Group, Knot Theory, and Statistical Mechanics. World Scientific, Singapore (1990)

  12. Drinfeld, V.: Quantum groups. In: Proceeding of ICM, pp. 798–820. Academic Press, Berkeley (1986)

  13. Mattis, D.: The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  14. Zamolodchikov, A.B., Zamolodchikov, A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys. 120, 253–291 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  15. Sklyanin, E.: Quantum version of the method of inverse scattering problem. J. Sov. Math. 19, 1546–1596 (1982)

    Article  MATH  Google Scholar 

  16. Kulish, P., Sklyanin, E.: Solutions of the Yang–Baxter equation. J. Sov. Math. 19, 1596–1620 (1982)

    Article  MATH  Google Scholar 

  17. Jimbo, M.: A \(q\)-difference analogue of U(g) and the Yang–Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Batchelor, M.T.: The Bethe ansatz after 75 years. Phys. Today 60, 36 (2007)

    Article  ADS  Google Scholar 

  19. Kauffman, L.: Knots and Physics. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  20. Kauffman, L.H., Lomonaco Jr, S.J.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  21. Wang, Z.: Topologization of electron liquids with Chern–Simons theory and quantum computation. In: Differential Geometry and Physics, Nankai Tracts. Math., vol. 10, pp. 106–120. World Scientific (2006). arXiv:cond-mat/0601285

  22. Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Sarma, S.D., Freedman, M., Nayak, C.: Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166,802 (2005)

    Article  Google Scholar 

  24. Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Its Ramif. 15, 413–427 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kauffman, L.H.: Knot Logic and Topological Quantum Computing with Majorana Fermions. arXiv:1301.6214 (2013)

  26. Kitaev, A.Y.: Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  27. Chen, J.L., Xue, K., Ge, M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614–2623 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hu, S.W., Xue, K., Ge, M.L.: Optical simulation of the Yang–Baxter equation. Phys. Rev. A 78, 022,319 (2008)

    Article  MathSciNet  Google Scholar 

  29. Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042,324 (2007)

    Article  Google Scholar 

  30. Zhang, Y., Kauffman, L.H., Ge, M.L.: Yang-Baxterizations, universal quantum gates and hamiltonians. Quantum Inf. Process. 4(3), 159–197 (2005)

    Article  MathSciNet  Google Scholar 

  31. Ge, M.L., Xue, K.: Yang–Baxter equations in quantum information. Int. J. Mod. Phys. B 26, 1243,007 (2012)

    Article  MathSciNet  Google Scholar 

  32. Nayak, C., Wilczek, F.: 2n-quasihole states realize \(2^ {n-1}\)-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B 479, 529–553 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Read, N., Rezayi, E.: Quasiholes and fermionic zero modes of paired fractional quantum Hall states: the mechanism for non-Abelian statistics. Phys. Rev. B 54, 16,864–16,887 (1996)

    Article  Google Scholar 

  35. Slingerland, J., Bais, F.: Quantum groups and non-Abelian braiding in quantum Hall systems. Nuclear Phys. B 612, 229–290 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Jones, V.: On a certain value of the Kauffman polynomial. Commun. Math. phys. 125, 459–467 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Benvegnù, A., Spera, M.: On uncertainty, braiding and entanglement in geometric quantum mechanics. Rev. Math. Phys. 18, 1075–1102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng, C., Li, Jl, Song, Sy, Long, G.L.: Direct experimental simulation of the Yang–Baxter equation. JOSA B 30, 1688–1693 (2013)

    Article  ADS  Google Scholar 

  39. Wu, T.T., Yu, M.L.: Theory and application of Fermi pseudo-potential in one dimension. J. Math. Phys. 43, 5949 (2002)

  40. Niu, K., Xue, K., Zhao, Q., Ge, M.L.: The role of the \(\ell _1\)-norm in quantum information theory and two types of the Yang–Baxter equation. J. Phys. A: Math. Theor. 44(265), 304 (2011)

    Google Scholar 

  41. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52, 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Baraniuk, R., Romberg, J., Wakin, M.: Tutorial on compressive sensing. 2008 Information Theory and Applications Workshop (2008). www.dsp.ece.rice.edu/richb/talks/cs-tutorial-ITA-feb08-complete.pdf

  44. Perelomov, A.M.: Generalized coherent states and some of their applications. Phys.-Usp. 20, 703–720 (1977)

    ADS  Google Scholar 

  45. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1987)

    Google Scholar 

  46. Rose, M.E.: Elementary Theory of Angular Momentum. Dover, New York (1995)

    MATH  Google Scholar 

  47. Birman, J.S., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313, 249–273 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24, 745–758 (1987)

  49. Wenzl, H.: On the structure of Brauer’s centralizer algebras. Ann. Math. 128, 173–193 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, Q., Zhang, R.Y., Xue, K., Ge, M.L.: Topological Basis Associated with BWMA, Extremes of L1-Norm in Quantum Information and Applications in Physics. arXiv:1211.6178 (2012)

  51. Fendley, P., Fradkin, E.: Realizing non-Abelian statistics in time-reversal-invariant systems. Phys. Rev. B 72(024), 412 (2005)

    Google Scholar 

  52. Jimbo, M.: Quantum R matrix for the generalized Toda system. Commun. Math. Phys. 102, 537–547 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Cheng, Y., Ge, M.L., Xue, K.: Yang–Baxterization of braid group representations. Commun. Math. Phys. 136, 195–208 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Yu L.-W. Zhao, Q., Ge, M.L.: Factorized three-body S-matrix restrained by the Yang–Baxter equation and quantum entanglements. Ann. Phys. 348, 106—126 (2014)

Download references

Acknowledgments

This work is in part supported by NSF of China with No. 11275024 and No. 11075077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo-Lin Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, ML., Xue, K., Zhang, RY. et al. Yang–Baxter equations and quantum entanglements. Quantum Inf Process 15, 5211–5242 (2016). https://doi.org/10.1007/s11128-014-0765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0765-3

Keywords

Navigation