Abstract
In this paper, we first uncover a fact that a partial adiabatic quantum search with \(O(\sqrt{N/M})\) time complexity is in fact optimal, in which \(N\) is the total number of elements in an unstructured database, and \(M\)(\(M\ge 1\)) of them are the marked ones(one) \((N\gg M)\). We then discuss how to implement a partial adiabatic search algorithm on the quantum circuit model. From the implementing procedure on the circuit model, we can find out that the approximating steps needed are always in the same order of the time complexity of the adiabatic algorithm.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001)
Reichardt B.W.: The quantum adiabatic optimization algorithm and local minima. Proceedings of the 36th Annual ACM Symposium on Theory of Computing(STOC’04), pp. 502–510. (2004)
Altshuler B., Krovi H., Roland J.: Adiabatic quantum optimization fails for random instances of NP-complete problems. arXiv:quant-ph/0908.2782. (2009)
Dickson, N.G., Amin, M.H.S.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106, 050502 (2009)
Choi, V.: Different adiabatic quantum optimization algorithms for the NP-complete exact cover problem. Proc. Natl. Acad. Sci. USA 108, E19–E20 (2011)
Das, S., Kobes, R., Kunstatter, G.: Adiabatic quantum computation and Deutsch’s algorithm. Phys. Rev. A 65, 062310 (2002)
Rao, M.V.P.: Solving a hidden subgroup problem using the adiabatic quantum-computing paradigm. Phys. Rev. A 67, 052306 (2003)
Peng, X., Liao, Z., Xu, N., Qin, G., Zhou, X., Suter, D., Du, J.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405 (2008)
Aharonov, D., Dam, W.V., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37(1), 166–194 (2007)
Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)
Childs, A.M., Farhi, E., Preskill, J.: Robustness of adiabatic quantum computation. Phys. Rev. A 63, 012322 (2001)
Sarandy, M.S., Lidar, D.A.: Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95, 250503 (2005)
Amin, M.H.S., Love, P.J., Truncik, C.J.S.: Thermally assisted adiabatic quantum computation. Phys. Rev. Lett. 100, 060503 (2008)
Lidar, D.A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100, 160506 (2008)
Messiah, A.: Quantum Mechanics. Chap. XVII. Dover, New York (1999)
Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett 79, 325–328 (1997)
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106. (2000)
Tulsi, A.: Adiabatic quantum computation with a one-dimensional projector Hamiltonian. Phys. Rev. A 80, 052328 (2009)
Jonckheere, E.A., Rezakhani, A.T., Ahmad, F.: Differential topology of adiabatically controlled quantum processes. Quantum Inf. Process. 12, 1515–1538 (2013)
Jonckheere, E.A., Ahmad, F., Gutkin, E.: Differential topology of numerical range. Linear Algebra Appl. 279, 227–254 (1998)
Sun, J., Lu, S., Liu, F.: Partial adiabatic quantum search algorithm and its extensions. Quantum Inf. Process. 12(8), 2689–2699 (2013)
Sun, J., Lu, S., Liu, F., Yang, L.: Partial evolution based local adiabatic quantum search. Chin. Phys. B 21, 010306 (2012)
Zhang, Y., Hu, H., Lu, S.: A quantum search algorithm based on partial adiabatic evolution. Chin. Phys. B 20, 040309 (2011)
Dam, W.V., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? Proceedings of the 42th Annual Symposium Foundations of Computer Science(FOCS’01), pp. 279–287. (2001)
Roland, J., Cerf, N.J.: Quantum-circuit model of Hamiltonian search algorithms. Phys. Rev. A 68, 062311 (2003)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Acknowledgments
We gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No. 61173050. The second author also gratefully acknowledge the support of the China Postdoctoral Science Foundation under Grant No 2014M552041.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mei, Y., Sun, J., Lu, S. et al. Optimality of partial adiabatic search and its circuit model. Quantum Inf Process 13, 1751–1763 (2014). https://doi.org/10.1007/s11128-014-0770-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0770-6