Abstract
We propose an efficient scheme to drive two atoms in two coupled cavities into a two-atom singlet state via quantum Zeno dynamics and virtual excitations by one step. Then, we convert the two-atom singlet state into a three-atom singlet state in three coupled bimodal cavities with the same principle. We also discuss the influence of decoherence induced by cavity decay and atomic spontaneous emission by numerical calculation. This scheme is robust against both the cavity decay and atomic spontaneous emission since there are no excited cavity fields involved during the operation process, and the atoms are only virtually excited. Actually, if multi-level atoms and multi-mode cavities are applicable, we can convert the (\(n-1\))-atom (\(n\ge 3\)) singlet state into a \(n\)-atom singlet state in coupled cavity arrays with the same principle in theory.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 57. Cambridge University Press, Cambridge, MA (2000)
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1993)
Cabello, A.: \(N\)-particle \(N\)-level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402 (2002)
Mermin, N.D.: Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin \(s\). Phys. Rev. D 22, 356 (1980)
Cabello, A.: Supersinglets. J. Mod. Opt. 50, 1049 (2003)
Hillery, M., Bužek, V.: Singlet states and the estimation of eigenstates and eigenvalues of an unknown controlled-U gate. Phys. Rev. A 64, 042303 (2001)
Jin, G.S., Li, S.S., Feng, S.L., Zheng, H.Z.: Generation of a supersinglet of three three-level atoms in cavity QED. Phys. Rev. A 71, 034307 (2005)
Lin, G.W., Ye, M.Y., Chen, L.B., Du, Q.H., Lin, X.M.: Generation of the singlet state for three atoms in cavity QED. Phys. Rev. A 76, 014308 (2007)
Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. New J. Phys. 12, 023040 (2010)
Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411 (2013)
Lu, M., Xia, Y., Song, J., Song, H.S.: Driving three atoms into a singlet state in an optical cavity via adiabatic passage of a dark state. J. Phys. B At. Mol. Opt. Phys. 46, 015502 (2013)
von Neumann, J.: Die Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)
Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)
Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)
Streed, E.W., Mun, J., Boyd, M., Gretchen, K., Campbell, G.K., Medley, P., Ketterle, W., Pritchard, D.E.: Continuous and pulsed quantum Zeno effect. Phys. Rev. Lett. 97, 260402 (2006)
Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295 (1990)
Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)
Facchi, P., Pascazio, S.: Quantum Zeno Subspaces. Phys. Rev. Lett. 89, 080401 (2002)
Beige, A., Braun, D., Knight, P.L.: Driving atoms into decoherence-free states. New J. Phys. 2, 22 (2000)
Azuma, H.: Interaction-free generation of entanglement. Phys. Rev. A 68, 022320 (2003)
Chen, R.X., Shen, L.T.: Interaction-free generation of entanglement. Phy. Lett. A 375, 3840 (2011)
Wang, X.B., You, J.Q., Nori, F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A 77, 062339 (2008)
Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Yeon, K.H.: One-step implementation of the Toffoli gate via quantum Zeno dynamics. Phys. Lett. A 374, 28 (2009)
Huang, Y.P., Moore, M.G.: Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits. Phys. Rev. A 77, 062332 (2008)
Yang, R.C., Li, G., Zhang, T.C.: Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Inf. Process. 12, 493 (2012)
Spollane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant No. 11105030, the Natural Science Foundation of Fuzhou University of China under Grant Nos. XRC-0976 and 2010-XQ-28, the funds from Education Department of Fujian Province of China under Grant Nos. JA11005, JA10009 and JA10039, the National Natural Science Foundation of Fujian Province of China under Grant Nos. 2010J01006 and 2012J01269, the Foundation of Ministry of Education of China under Grant No. 212085.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, YH., Xia, Y. & Song, J. Deterministic generation of singlet states for \(N\)-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf Process 13, 1857–1877 (2014). https://doi.org/10.1007/s11128-014-0772-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0772-4