Abstract
In this paper, two multi-party quantum private comparison (MQPC) protocols are proposed in distributed mode and traveling mode, respectively. Compared with the first MQPC protocol, which pays attention to compare between arbitrary two participants, our protocols focus on the comparison of equality for \(n\) participants with a more reasonable assumption of the third party. Through executing our protocols once, it is easy to get if \(n\) participants’ secrets are same or not. In addition, our protocols are proved to be secure against the attacks from both outside attackers and dishonest participants.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceeding of the IEEE International Conference on Computers, Systems and Signal, pp. 175–179. Bangalore, India (1984)
Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 054301 (2004)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)
Hillery, M.: Quantum voting and privacy protection: first steps. Int. Soc. Opt. Eng. (2006). doi:10.1117/2.1200610.0419
Bonanome, M., Bužek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84, 022331 (2011)
Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282, 1939 (2009)
Wang, Q.L., Zhang, W.W., Su, Q.: Revisiting “The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution”. Int. J. Theor. Phys. (2014). doi:10.1007/s10773-014-2112-y
Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multiparty quantum summation. Acta Phys. Sin. 56, 6214 (2007)
Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd I EEE Symposium on Foundations of Computer Science (FOCS 82), p. 160, Washington, DC, USA (1982)
Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires problem. Discr. Appl. Math. (Special Issue Coding Cryptol.) 111(1–2), 23–36 (2001)
Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)
Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009)
Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)
Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2012)
Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)
Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on “Quantum private comparison protocols with a semi-honest third party”. Quantum Inf. Process. 12, 877–885 (2013)
Chang, Y.J., Tsai, ChW: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)
Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1987–1990 (2013)
Zhang, W.W., Li, D., Zhang, K.J., Zuo, H.J.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12, 2241–2249 (2013)
Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. Chin. Phys. Mech. Astron. 56, 1670–1678 (2013)
Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison with \(d\)-level single-particle states. Phys. Scr. 88, 065013 (2013)
Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)
Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)
Damgard, I., Fehr, S., Salvail, L., Schaffner, C.: Secure Identification and QKD in the bounded-quantum-storage model. Proc. Adv. Cryptol. 4622, 342–359 (2007)
Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler C-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)
Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery–Bužek–Berthiaume quantum secret sharing protocol. Phys. Rev. A 76, 062324 (2007)
Lin, S., Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)
Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)
Song, T.T., Zhang, J., Gao, F.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)
Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(d\)-level systems. Phys. Rev. Lett. 88, 127902 (2002)
Karimipour, V., Bahraminasab, A.: Quantum key distribution for \(d\)-level systems with generalized Bell states. Phys. Rev. A 65, 052331 (2002)
Durt, T., Kaszlikowski, D., Chen, J.L., Kwek, L.C.: Security of quantum key distributions with entangled qudits. Phys. Rev. A 69, 032313 (2004)
Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010)
Raymond, L., Cesar, M., Juan, P.P., Wojciech, H.Z.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)
Emanuel, K., Raymond, L.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)
Acknowledgments
This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant Nos. 2012RC0612, 2011YB01).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, QL., Sun, HX. & Huang, W. Multi-party quantum private comparison protocol with \(n\)-level entangled states. Quantum Inf Process 13, 2375–2389 (2014). https://doi.org/10.1007/s11128-014-0774-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0774-2