Abstract
In this paper, we investigate the dynamics of entanglement of three-qubit states of a system dissipating into a common environment. By using the tripartite negativity as entanglement measure, our results imply that the three-qubit entanglement can be generated among the three qubits which have no interaction with each other, but interact with the common environment independently. From our analysis, we find that the three-qubit entanglement increases from zero to a stable value which varies with the size of the system with the increasing of the scaled time. Additionally, the extension of the entanglement generation to an arbitrary size of a subsystem is made and some discussion is given.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Chap. 3. Cambridge University Press, Cambridge (2000)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Pan, J.-W., Chen, Z.-B., Weinfurter, H., Zeilinger, A.: Zukowski, : Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)
Silva, I.A., Girolami, D., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Measuring bipartite quantum correlations of an unknown state. Phys. Rev. Lett. 110, 140501 (2013)
Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)
Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)
Hiroshima, T., Adesso, G., Illuminati, F.: Monogamy inequality for distributed Gaussian entanglement. Phys. Rev. Lett. 98, 050503 (2007)
Devi, Usha: A.R., Prabhu, R., Rajagopal, A.K.: Characterizing multiparticle entanglement in symmetric N-qubit states via negativity of covariance matrices. Phys. Rev. Lett. 98, 060501 (2007)
Rodo, C., Adesso, G., Sanpera, A.: Quantum information with continuous variable systems. Phsy. Rev. Lett. 100, 110505 (2008)
Calabrese, P., Cardy, J., Tonni, E.: Entanglement negativity in quantum field theory. Phsy. Rev. Lett. 109, 130502 (2012)
Kreis, K., van Loock, P.: Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement. Phys. Rev. A 85, 032307 (2012)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)
Sadiek, G., Alkurtass, B., Aldossary, O.: Entanglement in a time-dependent coupled XY spin chain in an external magnetic field. Phy. Rev. A 82, 052337 (2010)
Rudner, M.S., Vandersypen, L.M.K., Vuleti, V., Levitov, L.S.: Generating entanglement and squeezed states of nuclear spins in quantum dots. Phsy. Rev. Lett. 107, 206806 (2011)
Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)
Qin, W., Wang, C., Long, G.L.: High-dimensional quantum state transfer through a quantum spin chain. Phys. Rev. A 87, 012339 (2013)
Zippilli, S., Paternostro, M., Adesso, G., Illuminati, F.: Entanglement replication in driven dissipative many-body systems. Phys. Rev. Lett. 110, 040503 (2013)
Plenio, M.B., Huelga, S.F.: Entangled light from white noise. Phys. Rev. Lett. 88, 197901 (2002)
Clark, S., Peng, A., Gu, M., Parkins, S.: ibid. 91, 177901 (2003)
Mancini, S., Wang, J.: Towards feedback control of entanglement. Eur. Phys. J. D 32, 257 (2005)
Hartmann, L., Dur, W., Briegel, H.J.: Steady-state entanglement in open and noisy quantum systems. Phys. Rev. A 74, 052304 (2006)
Angelakis, D., Bose, S., Mancini, S.: Steady-state entanglement between hybrid light-matter qubits. Europhys. Lett. 85, 20007 (2009)
Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)
Ghosh, B., Majumdar, A.S., Nayak, N.: Environment-assisted entanglement enhancement. Phys. Rev. A 74, 052315 (2006)
Memarzadeh, L., Mancini, S.: Stationary entanglement achievable by environment-induced chain links. Phys. Rev. A 83, 042329 (2011)
Rafiee, M., Lupo, C., Mokhtari, H., Mancini, S.: Stationary and uniform entanglement distribution in qubit networks with quasilocal dissipation. Phys. Rev. A 85, 042320 (2012)
Huelga, S.F., Rivas, A., Plenio, M.B.: Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108, 160402 (2012)
Braun, D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901 (2002)
Benatti, F., Floreanini, R., Piani, M.: Environment induced entanglement in Markovian dissipative dynamics. Phys. Rev. Lett. 91, 070402 (2003)
Memarzadeh, L., Mancini, S.: Entanglement dynamics for qubits dissipating into a common environment. Phys. Rev. A 87, 032303 (2013)
Lu, H.-Z., Zhao, J.-Q., Cao, L.-Z., Wang, X.-Q.: Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger–Horne–Zeilinger states. Phys. Rev. A 84, 044101 (2011)
Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)
Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger–Horne–Zeilinger-symmetric states. Phys. Rev. Lett. 108, 020502 (2012)
Laskowski, W., Richart, D., Schwemmer, C., Paterek, T., Weinfurter, H.: Experimental Schmidt decomposition and state independent entanglement detection. Phys. Rev. Lett. 108, 240501 (2012)
Zhao, M.-J., Zhang, T.-G., Li-Jost, X., Fei, S.-M.: Identification of three-qubit entanglement. Phys. Rev. A 87, 012316 (2013)
Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Sabin, C., Garcia-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)
Barreiro, J.T., Muller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature (London) 470, 486 (2011)
Brakhane, S., Alt, W., Kampschulte, T., Martinez-Dorantes, M., Reimann, R., Yoon, S., Widera, A., Meschede, D.: Bayesian feedback control of a two-atom spin-state in an atom-cavity system. Phys. Rev. Lett. 109, 173601 (2012)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant Nos. 11105001, 11004001, 10975125, the Key Project of Chinese Ministry of Education (Grant No. 212076), and by Anhui Provincial Natural Science Foundation under Grant No. 1408085QA22.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, X.S., Qiao, Y., Cheng, M.T. et al. Three-qubit entanglement generation of quantum states dissipating into a common environment. Quantum Inf Process 13, 1879–1891 (2014). https://doi.org/10.1007/s11128-014-0781-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0781-3