Skip to main content
Log in

Two efficient schemes for probabilistic remote state preparation and the combination of both schemes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose two novel schemes for probabilistic remote preparation of an arbitrary quantum state with the aid of the introduction of auxiliary particles and appropriate local unitary operations. The first new proposal could be used to improve the total successful probability of the remote preparation of a general quantum state, and the successful probability is twice as much as the one of the preceding schemes. Meanwhile, one can make use of the second proposal to realize the remote state preparation when the information of the partially entangled state is only available for the sender. This is in contrast to the fact that the receiver must know the non-maximally entangled state in previous typical schemes. Hence, our second proposal could enlarge the applied range of probabilistic remote state preparation. Additionally, we will illustrate how to combine these novel proposals in detail, and our results show that the union has the advantages of both schemes. Of course, our protocols are implemented at the cost of the increased complexity of the practical realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  3. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A Math. Gen. 34, 7081 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair. Chin. Phys. 12, 1354 (2003)

    Article  ADS  Google Scholar 

  6. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B 6, 106 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  7. Xiao, X.Q., Liu, J.M.: Remote preparation of a two-particle entangled state by a bipartite entangled state and a tripartite entangled W state. Commun. Theor. Phys. 47, 247 (2007)

    Article  ADS  Google Scholar 

  8. Dai, H.Y., Zhang, M., Li, C.Z.: Teleportation of three-level multi-partite entangled state by a partial three-level bipartite entangled state. Commun. Theor. Phys. 49, 891 (2008)

    Article  ADS  Google Scholar 

  9. Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 54, 1089 (2012)

    Article  Google Scholar 

  10. Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Al-Amri, M., Evers, J., Ikram, M., Zubairy, M.S.: Quantum teleportation of high-dimensional atomic ensemble states. J. Phys. B At. Mol. Opt. Phys. 45, 095502 (2012)

    Article  ADS  Google Scholar 

  12. Fu, C.H., Hu, Z.N.: Quantum teleportation via completely anisotropic Heisenberg chain in inhomogeneous magnetic field. Commun. Theor. Phys. 59, 398 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  14. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  15. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  16. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  17. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  18. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  19. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  20. Killoran, N., Biggerstaff, D.N., Kaltenbaek, R., Resch, K.J., Lütkenhaus, N.: Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states. Phys. Rev. A 81, 012334 (2010)

    Article  ADS  Google Scholar 

  21. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  22. Zhang, Z.J., Cheung, C.Y.: Minimal classical communication and measurement complexity for quantum information splitting. J. Phys. B At. Mol. Opt. Phys. 45, 205506 (2011)

    Google Scholar 

  23. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B At. Mol. Opt. Phys. 44, 165508 (2012)

    Article  ADS  Google Scholar 

  24. Wang, Z.Y.: Classical communication cost and probabilistic remote two-qubit state preparation via POVM and W-type states. Quantum Inf. Process. 11, 1585 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)

    Article  ADS  Google Scholar 

  27. Xiang, G.Y., Zhang, Y.S., Li, J., Guo, G.C.: Scheme for preparation of the W-state by using linear optical elements. J. Opt. B 5(3), 208–210 (2003)

    Article  ADS  Google Scholar 

  28. Xia, Y., Song, J., Song, H.S.: Linear optical protocol for preparation of n-photon Greenberger–Horne–Zeilinger state with conventional photon detectors. Appl. Phys. Lett. 92, 021127 (2008)

    Article  ADS  Google Scholar 

  29. Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  30. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Gasparoni, S., Pan, J.W., Bouwmeester, D., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61134008, 11074307 and 61273202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Dai, HY. & Zhang, M. Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf Process 13, 2115–2125 (2014). https://doi.org/10.1007/s11128-014-0799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0799-6

Keywords

Navigation