Skip to main content
Log in

Photon-monitoring attack on continuous-variable quantum key distribution with source in middle

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Motivated by a fact that the non-Gaussian operation may increase entanglement of an entangled system, we suggest a photon-monitoring attack strategy in the entanglement-based (EB) continuous-variable quantum key distribution (CVQKD) using the photon subtraction operations, where the entangled source originates from the center instead of one of the legal participants. It shows that an eavesdropper, Eve, can steal large information from participants after intercepting the partial beams with the photon-monitoring attach strategy. The structure of the proposed CVQKD protocol is useful in simply analyzing how quantum loss in imperfect channels can decrease the performance of the CVQKD protocol. The proposed attack strategy can be implemented under current technology, where a newly developed and versatile no-Gaussian operation can be well employed with the entangled source in middle in order to access to mass information in the EB CVQKD protocol, as well as in the prepare-and-measure (PM) CVQKD protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  3. Weedbrook, C., Pirandola, S., Garcáa-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  4. Grosshans, F., Van Assche, G., Wenger, J., Tualle-Brouri, R., Cerf, N.J., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  5. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  6. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  7. Renner, R., Cerf, N.J.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)

    Article  ADS  Google Scholar 

  8. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  9. Furrer, F., Franz, T., Bert, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109, 100502 (2012)

    Article  ADS  Google Scholar 

  10. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004)

    Article  ADS  Google Scholar 

  11. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013)

    Article  ADS  Google Scholar 

  12. Madsen, L.S., Usenko, V.C., Lassen, M., Filip, R., Andersen, U.L.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012)

    Article  ADS  Google Scholar 

  13. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  14. Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84, 062317 (2011)

    Article  ADS  Google Scholar 

  15. Yang, J., Xu, B., Guo, H.: Source monitoring for continuous-variable quantum key distribution. Phys. Rev. A 86, 042314 (2012)

    Article  ADS  Google Scholar 

  16. Takahashi, H., Neergaard-Nielsen, J.S., Takeuchi, M., Takeoka, M., Hayasaka, K., Furusawa, A., Sasaki, M.: Entanglement distillation from Gaussian input states. Nat. Photon. 4, 178 (2010)

    Article  ADS  Google Scholar 

  17. Leverrier, A., Grangier, P.: Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 83, 042312 (2011)

    Article  ADS  Google Scholar 

  18. Kim, H.-J., Lee, S.-Y., Ji, S.-W., Nha, H.: Quantum linear amplifier enhanced by photon subtraction and addition. Phys. Rev. A 85, 013839 (2012)

    Article  ADS  Google Scholar 

  19. Lee, S.-Y., Ji, S.-W., Kim, H.-J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84, 012302 (2011)

    Article  ADS  Google Scholar 

  20. García-Patrón, R., Cerf, N.:Quantum information with optical continuous variables: from bell tests to key distribution/information Quantique avec Variables Continues Optiques: des Tests de Bell à la Distribution de Clé

  21. Huang, P., He, G., Fang, J., Zeng, G.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)

    Article  ADS  Google Scholar 

  22. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  24. Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87, 022308 (2013)

    Article  ADS  Google Scholar 

  25. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 3, 535 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73, 042310 (2006)

    Article  ADS  Google Scholar 

  27. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61272495, 61379153), the postdoctoral science foundation of China (2013M542119), and partly by Scientific Research Fund of Hunan Provincial Education Department (13A010) and the construct program of the key discipline in Hunan province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, P., Guo, Y. et al. Photon-monitoring attack on continuous-variable quantum key distribution with source in middle. Quantum Inf Process 13, 2745–2757 (2014). https://doi.org/10.1007/s11128-014-0821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0821-z

Keywords

Navigation