Skip to main content

Advertisement

Log in

Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Taking collective noise into account, a feasible protocol for distributing a multi-photon polarization-entangled state is presented assisted with spatial degree of freedom. The compositions of polarization beam splitters and half-wave plates with tilted \(\pi /4\) functioning as NOT gates convert the entanglement modes between the polarization and spatial degree of freedom. The appropriate and available optical elements are applied, by which the protocol can be feasibly implemented without the influence resulting from arbitrary collective noise. Furthermore, the successful probability of the entangled state distribution equals to unity for unitary collective noise model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  3. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  4. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  6. Bai, Y.-K., Xu, Y.-F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)

    Article  ADS  Google Scholar 

  7. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  8. Wang, Q., Tan, M.-Y., Liu, Y., Zeng, H.-S.: Entanglement distribution via noisy quantum channels. J. Phys. B 42, 125503 (2009)

    Article  ADS  Google Scholar 

  9. Brask, J.B., Jiang, L., Gorshkov, A.V., Vuletic, V., Sø rensen, A.S., Lukin, M.D.: Fast entanglement distribution with atomic ensembles and fluorescent detection. Phys. Rev. A 81, 020303 (2010)

    Article  ADS  Google Scholar 

  10. Sheng, Y.-B., Deng, F.-G.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Phys. Rev. A 81, 042332 (2010)

    Article  ADS  Google Scholar 

  11. Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., Pan, J.-W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185 (2012)

    Article  ADS  Google Scholar 

  12. Wang, M.-M., Chen, X.-B., Luo, S.-S., Yang, Y.-X.: Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Inf. Process. 11, 1715 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Deng, F.-G., Li, C.-Y., Li, Y.-S., Zhou, H.-Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  15. Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  20. Li, Z., Long, L.-R., Zhou, P., Yin, C.-L.: Probabilistic multiparty-controlled teleportation of an arbitrary m-qubit state with a pure entangled quantum channel against collective noise. Sci. China Phys. Mech. Astron. 55, 2445 (2012)

    Article  ADS  Google Scholar 

  21. Yang, C.-W., Hwang, T.: Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels. Quantum Inf. Process. 12, 3207 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Cirac, J., Ekert, A., Huelga, S., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  25. Pan, J.-W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  26. Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  27. Sheng, Y., Liu, J., Zhao, S., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507 (2013)

    Article  Google Scholar 

  28. Wang, T.-J., Long, G.L.: Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics. J. Opt. Soc. Am. B 30, 1069 (2013)

    Article  ADS  Google Scholar 

  29. Wen, H., Han, Z., Zhao, Y., Guo, G., Hong, P.: Multiple stochastic paths scheme on partially-trusted relay quantum key distribution network. Sci. China Ser. F Inf. Sci. 52, 18 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Briegel, H.-J., Dür, W., Cirac, J., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  31. Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  32. Yuan, Z.-S., Chen, Y.-A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.-W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098 (2008)

    Article  ADS  Google Scholar 

  33. Wang, T.-J., Song, S.-Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  34. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481 (2007)

    Article  Google Scholar 

  35. Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursin, R., Pernechele, C., Luceri, V., Bianco, G., Zeilinger, A., Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008)

    Article  ADS  Google Scholar 

  36. Fedrizzi, A., Ursin, R., Herbst, T., Nespoli, M., Prevedel, R., Scheidl, T., Tiefenbacher, F., Jennewein, T., Zeilinger, A.: High-fidelity transmission of entanglement over a high-loss free-space channel. Nat. Phys. 5, 389 (2009)

    Article  Google Scholar 

  37. Scheidl, T., Ursin, R., Fedrizzi, A., Ramelow, S., Ma, X.-S., Herbst, T., Prevedel, R., Ratschbacher, L., Kofler, J., Jennewein, T., Zeilinger, A.: Feasibility of 300 km quantum key distribution with entangled states. New J. Phys. 11, 085002 (2009)

    Article  ADS  Google Scholar 

  38. Song, S., Cao, Y., Sheng, Y.-B., Long, G.-L.: Complete Greenberger Horne Zeilinger state analyzer using hyperentanglement. Quantum Inf. Process. 12, 381 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Kalamidas, D.: Single-photon quantum error rejection and correction with linear optics. Phys. Lett. A 343, 331 (2005)

    Article  ADS  MATH  Google Scholar 

  40. Deng, F.-G., Li, X.-H., Zhou, H.-Y.: Passively self-error-rejecting qubit transmission over a collective-noise channel. Quantum Inf. Comput. 11, 0913 (2011)

    MathSciNet  Google Scholar 

  41. Li, X.-H., Zhao, B.-K., Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Efficient faithful qubit transmission with frequency degree of freedom. Opt. Commun. 282, 4025 (2009)

    Article  ADS  Google Scholar 

  42. Salemian, S., Mohammadnejad, S.: An error-free protocol for quantum entanglement distribution in long-distance quantum communication. Chin. Sci. Bull. 56, 618 (2011)

    Article  Google Scholar 

  43. Xiao, L., Wang, C., Zhang, W., Huang, Y.-D., Peng, J.-D., Long, G.-L.: Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs. Phys. Rev. A 77, 042315 (2008)

    Article  ADS  Google Scholar 

  44. Choi, K.S., Deng, H., Laurat, J., Kimble, H.J.: Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67 (2008)

    Article  ADS  Google Scholar 

  45. Chen, Y.-A., Chen, S., Yuan, Z.-S., Zhao, B., Chuu, C.-S., Schmiedmayer, J., Pan, J.-W.: Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103 (2008)

    Article  Google Scholar 

  46. Zhao, B., Chen, Y.-A., Bao, X.-H., Strassel, T., Chuu, C.-S., Jin, X.-M., Schmiedmayer, J., Yuan, Z.-S., Chen, S., Pan, J.-W.: A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5, 95 (2009)

    Article  Google Scholar 

  47. Hedges, M.P., Longdell, J.J., Li, Y., Sellars, M.J.: Efficient quantum memory for light. Nature 465, 1052 (2010)

    Article  ADS  Google Scholar 

  48. Clausen, C., Usmani, I., Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Gisin, N.: Quantum storage of photonic entanglement in a crystal. Nature 469, 508 (2011)

    Article  ADS  Google Scholar 

  49. Bao, X.-H., Reingruber, A., Dietrich, P., Rui, J., Dück, A., Strassel, T., Li, L., Liu, N.-L., Zhao, B., Pan, J.-W.: Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8, 517 (2012)

    Article  Google Scholar 

  50. Ding, D.-S., Zhou, Z.-Y., Shi, B.-S., Zou, X.-B., Guo, G.-C.: Storage and retrieval of a light in telecomband in a cold atomic ensemble arXiv:1210.3963 (2012)

  51. Munro, W.J., Nemoto, K., Beausoleil, R.G., Spiller, T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005)

    Article  ADS  Google Scholar 

  52. He, B., Ren, Y., Bergou, J.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79, 052323 (2009)

    Article  ADS  Google Scholar 

  53. He, B., Ren, Y.-H., Bergou, J.A.: Universal entangler with photon pairs in arbitrary states. J. Phys. B 43, 25502 (2010)

    Article  Google Scholar 

  54. Kardynal, B.E., Yuan, Z.L., Shields, A.J.: An avalanche-photodiode-based photon-number-resolving detector. Nat. Photonics 2, 425 (2008)

    Article  Google Scholar 

  55. Bergeal, N., Schackert, F., Metcalfe, M., Vijay, R., Manucharyan, V.E., Frunzio, L., Prober, D.E., Schoelkopf, R.J., Girvin, S.M., Devoret, M.H.: Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64 (2010)

    Article  ADS  Google Scholar 

  56. Pernice, W.H.P., Schuck, C., Minaeva, O., Li, M., Goltsman, G.N., Sergienko, A.V., Tang, H.X.: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    Article  ADS  Google Scholar 

  57. Kim, J., Chen, J., Zhang, Z., Wong, F.N.C., Kärtner, F.X., Loehl, F., Schlarb, H.: Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator. Opt. Lett. 32, 1044 (2007)

    Article  ADS  Google Scholar 

  58. Kim, J., Cox, J.A., Chen, J., Kärtner, F.X.: Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat. Photonics 2, 733 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11305016, 61301133, 11271055), the Research Programs of the Educational Office of Liaoning Province of China (Grant No. L2013425) and Program for Liaoning Excellent Talents in University (Grant No. LJQ2014124). We acknowledge anonymous reviewers for enlightening instructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Xiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, XM., Li, QY., Dong, L. et al. Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf Process 14, 361–372 (2015). https://doi.org/10.1007/s11128-014-0844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0844-5

Keywords