Abstract
Taking collective noise into account, a feasible protocol for distributing a multi-photon polarization-entangled state is presented assisted with spatial degree of freedom. The compositions of polarization beam splitters and half-wave plates with tilted \(\pi /4\) functioning as NOT gates convert the entanglement modes between the polarization and spatial degree of freedom. The appropriate and available optical elements are applied, by which the protocol can be feasibly implemented without the influence resulting from arbitrary collective noise. Furthermore, the successful probability of the entangled state distribution equals to unity for unitary collective noise model.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)
Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)
Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)
Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)
Bai, Y.-K., Xu, Y.-F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)
Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)
Wang, Q., Tan, M.-Y., Liu, Y., Zeng, H.-S.: Entanglement distribution via noisy quantum channels. J. Phys. B 42, 125503 (2009)
Brask, J.B., Jiang, L., Gorshkov, A.V., Vuletic, V., Sø rensen, A.S., Lukin, M.D.: Fast entanglement distribution with atomic ensembles and fluorescent detection. Phys. Rev. A 81, 020303 (2010)
Sheng, Y.-B., Deng, F.-G.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Phys. Rev. A 81, 042332 (2010)
Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., Pan, J.-W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185 (2012)
Wang, M.-M., Chen, X.-B., Luo, S.-S., Yang, Y.-X.: Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Inf. Process. 11, 1715 (2012)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Deng, F.-G., Li, C.-Y., Li, Y.-S., Zhou, H.-Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)
Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Li, Z., Long, L.-R., Zhou, P., Yin, C.-L.: Probabilistic multiparty-controlled teleportation of an arbitrary m-qubit state with a pure entangled quantum channel against collective noise. Sci. China Phys. Mech. Astron. 55, 2445 (2012)
Yang, C.-W., Hwang, T.: Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels. Quantum Inf. Process. 12, 3207 (2013)
Cirac, J., Ekert, A., Huelga, S., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Pan, J.-W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)
Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)
Sheng, Y., Liu, J., Zhao, S., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507 (2013)
Wang, T.-J., Long, G.L.: Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics. J. Opt. Soc. Am. B 30, 1069 (2013)
Wen, H., Han, Z., Zhao, Y., Guo, G., Hong, P.: Multiple stochastic paths scheme on partially-trusted relay quantum key distribution network. Sci. China Ser. F Inf. Sci. 52, 18 (2009)
Briegel, H.-J., Dür, W., Cirac, J., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)
Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)
Yuan, Z.-S., Chen, Y.-A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.-W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098 (2008)
Wang, T.-J., Song, S.-Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)
Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481 (2007)
Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursin, R., Pernechele, C., Luceri, V., Bianco, G., Zeilinger, A., Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008)
Fedrizzi, A., Ursin, R., Herbst, T., Nespoli, M., Prevedel, R., Scheidl, T., Tiefenbacher, F., Jennewein, T., Zeilinger, A.: High-fidelity transmission of entanglement over a high-loss free-space channel. Nat. Phys. 5, 389 (2009)
Scheidl, T., Ursin, R., Fedrizzi, A., Ramelow, S., Ma, X.-S., Herbst, T., Prevedel, R., Ratschbacher, L., Kofler, J., Jennewein, T., Zeilinger, A.: Feasibility of 300 km quantum key distribution with entangled states. New J. Phys. 11, 085002 (2009)
Song, S., Cao, Y., Sheng, Y.-B., Long, G.-L.: Complete Greenberger Horne Zeilinger state analyzer using hyperentanglement. Quantum Inf. Process. 12, 381 (2013)
Kalamidas, D.: Single-photon quantum error rejection and correction with linear optics. Phys. Lett. A 343, 331 (2005)
Deng, F.-G., Li, X.-H., Zhou, H.-Y.: Passively self-error-rejecting qubit transmission over a collective-noise channel. Quantum Inf. Comput. 11, 0913 (2011)
Li, X.-H., Zhao, B.-K., Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Efficient faithful qubit transmission with frequency degree of freedom. Opt. Commun. 282, 4025 (2009)
Salemian, S., Mohammadnejad, S.: An error-free protocol for quantum entanglement distribution in long-distance quantum communication. Chin. Sci. Bull. 56, 618 (2011)
Xiao, L., Wang, C., Zhang, W., Huang, Y.-D., Peng, J.-D., Long, G.-L.: Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs. Phys. Rev. A 77, 042315 (2008)
Choi, K.S., Deng, H., Laurat, J., Kimble, H.J.: Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67 (2008)
Chen, Y.-A., Chen, S., Yuan, Z.-S., Zhao, B., Chuu, C.-S., Schmiedmayer, J., Pan, J.-W.: Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103 (2008)
Zhao, B., Chen, Y.-A., Bao, X.-H., Strassel, T., Chuu, C.-S., Jin, X.-M., Schmiedmayer, J., Yuan, Z.-S., Chen, S., Pan, J.-W.: A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5, 95 (2009)
Hedges, M.P., Longdell, J.J., Li, Y., Sellars, M.J.: Efficient quantum memory for light. Nature 465, 1052 (2010)
Clausen, C., Usmani, I., Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Gisin, N.: Quantum storage of photonic entanglement in a crystal. Nature 469, 508 (2011)
Bao, X.-H., Reingruber, A., Dietrich, P., Rui, J., Dück, A., Strassel, T., Li, L., Liu, N.-L., Zhao, B., Pan, J.-W.: Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8, 517 (2012)
Ding, D.-S., Zhou, Z.-Y., Shi, B.-S., Zou, X.-B., Guo, G.-C.: Storage and retrieval of a light in telecomband in a cold atomic ensemble arXiv:1210.3963 (2012)
Munro, W.J., Nemoto, K., Beausoleil, R.G., Spiller, T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005)
He, B., Ren, Y., Bergou, J.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79, 052323 (2009)
He, B., Ren, Y.-H., Bergou, J.A.: Universal entangler with photon pairs in arbitrary states. J. Phys. B 43, 25502 (2010)
Kardynal, B.E., Yuan, Z.L., Shields, A.J.: An avalanche-photodiode-based photon-number-resolving detector. Nat. Photonics 2, 425 (2008)
Bergeal, N., Schackert, F., Metcalfe, M., Vijay, R., Manucharyan, V.E., Frunzio, L., Prober, D.E., Schoelkopf, R.J., Girvin, S.M., Devoret, M.H.: Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64 (2010)
Pernice, W.H.P., Schuck, C., Minaeva, O., Li, M., Goltsman, G.N., Sergienko, A.V., Tang, H.X.: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)
Kim, J., Chen, J., Zhang, Z., Wong, F.N.C., Kärtner, F.X., Loehl, F., Schlarb, H.: Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator. Opt. Lett. 32, 1044 (2007)
Kim, J., Cox, J.A., Chen, J., Kärtner, F.X.: Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat. Photonics 2, 733 (2008)
Acknowledgments
This study was supported by the National Natural Science Foundation of China (Grant Nos. 11305016, 61301133, 11271055), the Research Programs of the Educational Office of Liaoning Province of China (Grant No. L2013425) and Program for Liaoning Excellent Talents in University (Grant No. LJQ2014124). We acknowledge anonymous reviewers for enlightening instructions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xiu, XM., Li, QY., Dong, L. et al. Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf Process 14, 361–372 (2015). https://doi.org/10.1007/s11128-014-0844-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0844-5