Skip to main content
Log in

Coherent feedback enabled distributed generation of entanglement between propagating Gaussian fields

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we show how Einstein–Podolsky–Rosen-like entanglement between a pair of spatially separated propagating continuous-mode Gaussian fields can be generated via a coherent feedback loop that connects two spatially distant nondegenerate optical parametric amplifiers (NOPAs) over two transmission channels. In particular, the scheme generates entanglement in a distributed manner using spatially distributed resources. It is shown that similar to a single NOPA, the coherent feedback scheme has parameters that determine the achievable frequency-dependent two-mode squeezing and entanglement bandwidth between the pair of continuous-mode fields. It is also shown that in ideal scenarios, the feedback connection is able to yield an increase in the quality of the entanglement while consuming less power, compared to conventional distribution of entanglement using a single NOPA and a two-cascaded NOPA system. Furthermore, in contrast to the two conventional systems, under the same pump power, the coherent feedback system provides more entanglement in the presence of transmission losses, which indicates that the feedback scheme increases tolerance to transmission losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Note that [4] and the formula (6) takes \(\xi ^q_{\mathrm{out},a}-\xi ^q_{\mathrm{out},b}\) and \(\xi ^p_{\mathrm{out},a}+\xi ^p_{\mathrm{out},b}\) as the squeezed two-mode quadratures rather than \(\xi ^q_{\mathrm{out},a}+\xi ^q_{\mathrm{out},b}\) and \(\xi ^p_{\mathrm{out},a}-\xi ^p_{\mathrm{out},b}\), respectively. To obtain squeezing in the latter quadratures, as in this paper, in the single NOPA one need only take \(\epsilon <0\) and the formula (6) is modified to be \(V_{\pm }(0)= 2\frac{(1+k)^2}{(1-k)^2}\).

  2. See [21, 22] for experiments on the entanglement produced by cascading two or more NOPAs.

References

  1. Braunstein, S.L., Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MATH  Google Scholar 

  2. Briegel, H.J., Dr, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  3. Sangouard, N., Simon, C., Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  4. Ou, Z.Y., Pereira, S.F., Kimble, H.J.: Realization of the Einstein–Podolsky–Rosen paradox for continuous variables in nondegenerate parametric amplification. Appl. Phys. B 55, 265 (1992)

    Article  ADS  Google Scholar 

  5. Zhang, G.F., James, M.R.: Quantum feedback networks and control: a brief survey. Chin. Sci. Bull. 57(18), 2200–2214 (2012)

    Article  Google Scholar 

  6. Mabuchi, H.: Coherent-feedback quantum control with a dynamic compensator. Phys. Rev. A 78, 032323 (2008)

    Article  ADS  Google Scholar 

  7. Iida, S., Yukawa, M., Yonezawa, H., Yamamoto, N., Furusawa, A.: Experimental demonstration of coherent feedback control on optical field squeezing. IEEE Trans. Autom. Control 57(8), 2045–2050 (2012)

    Article  Google Scholar 

  8. Hamerly, R., Mabuchi, H.: Advantages of coherent feedback for cooling quantum oscillators. Phys. Rev. Lett. 109, 173602 (2012)

    Article  ADS  Google Scholar 

  9. Hamerly, R., Mabuchi, H.: Coherent controllers for optical-feedback cooling of quantum oscillators. Phys. Rev. A 87, 013815 (2013)

    Article  ADS  Google Scholar 

  10. Crisafulli, O., Tezak, N., Soh, D.B.S., Armen, M.A., Mabuchi, H.: Squeezed light in an optical parametric oscillator network with coherent feedback quantum control. Opt. Express 21(15), 18371–18386 (2013)

    Article  ADS  Google Scholar 

  11. Yan, Z., Jia, X., Xie, C., Peng, K.: Coherent feedback control of multipartite quantum entanglement for optical fields. Phys. Rev. A 84, 062304 (2011)

    Article  ADS  Google Scholar 

  12. Nurdin, H.I., Yamamoto, N.: Distributed entanglement generation between continuous-mode Gaussian fields with measurement-feedback enhancement. Phys. Rev. A 86, 022337 (2012)

    Article  ADS  Google Scholar 

  13. Gardiner, C., Collett, M.J.: Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31(6), 3761–3774 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  14. Waals, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  Google Scholar 

  15. Gardiner, C.W., Zoller, P.: Quantum Noise, 3rd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  16. Belavkin, V.P., Edwards, S.: Filtering and optimal control, pp. 143–205. Quantum Stochastics and Information - Statistics, Filtering and Control (2008)

  17. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  18. Vitali, D., Morigi, G., Eschner, J.: Single cold atom as efficient stationary source of EPR-entangled light. Phys. Rev. A 74, 053814 (2006)

    Article  ADS  Google Scholar 

  19. Gough, J.E., James, M.R., Nurdin, H.I.: Squeezing components in linear quantum feedback networks. Phys. Rev. A 81, 023804 (2010)

    Article  ADS  Google Scholar 

  20. Gerry, C.C., Knight, L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  21. He, W.-P., Li, F.-L.: Generation of broadband entangled light through cascading nondegenerate optical parametric amplifiers. Phys. Rev. A 76, 012328 (2007)

    Article  ADS  Google Scholar 

  22. Yan, Z., Jia, X., Su, X., Duan, Z., Xie, C., Peng, K.: Cascaded entanglement enhancement. Phys. Rev. A 85, 040305(R) (2012)

    Article  ADS  Google Scholar 

  23. Jacobs, B.C., Pittman, T.B., Franson, J.D.: Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002)

    Article  ADS  Google Scholar 

  24. Michiels, W., Niculescu, S.I.: Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. SIAM, Advances in Design and Control (2007)

  25. Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-BIFTOOL vol. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations. Technical report TW-330, Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium (2001)

  26. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Di Loreto, M., Dao, M., Jaulin, L., Lafay, J.-F., Loiseau, J.J.: Applied interval computation: A new approach for time-delays systems analysis. In: Chiasson, J., Loiseau, J.J. (eds.) Applications of Time Delay Systems, pp. 175–197. Springer, Berlin (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra I. Nurdin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Nurdin, H.I. Coherent feedback enabled distributed generation of entanglement between propagating Gaussian fields. Quantum Inf Process 14, 337–359 (2015). https://doi.org/10.1007/s11128-014-0845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0845-4

Keywords

Navigation