Skip to main content
Log in

Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of concurrence and quantum discord (QD) for the Werner state in independent non-Markovian environment is investigated. Our result manifests that QD reveal more properties about quantum correlations than concurrence for the given system. Additionally, an optimal scheme is proposed to suppress decoherence by performing prior weak measurement and post-measurement reversal. It is worth noticing that the effect of our scheme is better for the larger measurement strengths, and the stronger decoherence suppression induces smaller selection probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Communication. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  4. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  5. Xu, S., Song, X.K., Shi, J.D., Ye, L.: How the Hawking effect affects multipartite entanglement of Dirac particles in the background of a Schwarzschild black hole. Phys. Rev. D 89, 065022 (2014)

    Article  ADS  Google Scholar 

  6. Xu, S., Song, X.K., Ye, L.: Measurement-induced disturbance and negativity in mixed-spin XXZ model. Quantum Inf. Process 13, 1013–1024 (2014)

  7. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014–2017 (2000)

    Article  ADS  Google Scholar 

  8. Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  9. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  10. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  11. Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  12. Hao, X., Ma, C.L., Sha, J.Q.: Decoherence of quantum discord in an asymmetric-anisotropy spin system. J. Phys. A 43, 425302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Auccaise, R., Céleri, L.C., Soares-Pinto, D.O., de Azevedo, E.R., Maziero, J., Souza, A.M., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)

    Article  ADS  Google Scholar 

  15. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  17. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417–422 (2003)

    Article  ADS  Google Scholar 

  18. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

    Article  ADS  Google Scholar 

  19. Dong, R., et al.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919–923 (2008)

    Article  Google Scholar 

  20. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  22. Lidar, D.A., Chuang, I., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  23. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  24. Xu, H.S., Xu, J.B.: Protecting quantum correlations of two qubits in independent non-Markovian environments by bang–bang pulses. J. Opt. Soc. Am. B 29, 2074–2079 (2012)

    Article  ADS  Google Scholar 

  25. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  26. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)

    Article  ADS  Google Scholar 

  27. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  28. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)

    Article  ADS  Google Scholar 

  29. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  30. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  31. Katz, N., Neeley, M., Ansmann, M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  32. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit \(X\) states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 11074002 and 61275119, the Doctoral Foundation of the Ministry of Education of China under Grant No. 20103401110003, the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205, and also by the Personal Development Foundation of Anhui Province (2008Z018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., He, J., Song, Xk. et al. Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal. Quantum Inf Process 14, 755–764 (2015). https://doi.org/10.1007/s11128-014-0871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0871-2

Keywords

Navigation