Abstract
Temperature effect on the spin manipulation and spin injection in a quantum dot is investigated with the help of master equation method. Results show that the magnitude and the direction of the temperature difference between the source and drain leads have great impact on the spin store, writing, and reading processes. In practical devices, the thermal bias is quite general and then our results may be useful in quantum information processing and spintronics.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001)
Wolf, S.A., Chtchelkanova, A.Y., Treger, D.M.: Spintronics—a retrospective and perspective. IBM J. Res. Dev. 50(1), 101 (2006)
Wunderlich, J., Park, B.-G., Irvine, A.C., Zârbo, L.P., Rozkotová, E., Nemec, P., Novák, V., Sinova, J., Jungwirth, T.: Spin Hall effect transistor. Science 330, 2010 (1801)
Folk, J.A., Potok, R.M., Marcus, C.M., Umansky, V.: A gate-controlled bidirectional spin filter using quantum coherence. Science 299, 679 (2003)
Kroutvar, M., Ducommun, Y., Heiss, D., Bichler, M., Schuh, D., Abstreiter, G., Finley, J.J.: Optically programmable electron spin memory using semiconductor quantum dots. Nature (London) 432, 81 (2004)
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)
Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., Vander-sypen, L.M.K.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature (London) 442, 766 (2006)
Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218 (2008)
Xu, X.D., Wu, Y.W., Sun, B., Huang, Q., Chen, J., Steel, D.G., Bracker, A.S., Gammon, D., Emary, C., Sham, L.J.: Fast spin state initialization in a singly charged InAs–GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007)
Ebbens, A., Krizhanovskii, D.N., Tartakovskii, A.I., Pulizzi, F., Wright, T., Savelyev, A.V., Skolnick, M.S., Hopkinson, M.: Optical orientation and control of spin memory in individual InGaAs quantum dots. Phys. Rev. B 72, 073307 (2005)
Li, S.S., Chang, K., Xia, J.B.: Spin-dependent transport through Cd\(_{1-x}\) Mn\(_{x}\) Te diluted magnetic semiconductor quantum dots. Phys. Rev. B 68, 245306 (2003)
Ciorga, M., Einwanger, A., Wurstbauer, U., Schuh, D., Wegscheider, W., Weiss, D.: Electrical spin injection and detection in lateral all-semiconductor devices. Phys. Rev. B 79, 165321 (2009)
Frolov, S.M., Venkatesan, A., Yu, W., Folk, J.A., Wegscheider, W.: Electrical generation of pure spin currents in a two-dimensional electron gas. Phys. Rev. Lett. 102, 116802 (2009)
Frolov, S.M., Lüscher, S., Yu, W., Ren, Y., Folk, J.A., Wegscheider, W.: Ballistic spin resonance. Nature (London) 458, 868 (2009)
Chi, F., Sun, Q.: Electrical preparation and readout of a single spin state in a quantum dot via spin bias. Phys. Rev. B. 81, 075310 (2010)
Chi, F., Dai, X.N., Sun, L.L.: A quantum dot spin injector with spin bias. Appl. Phys. Lett. 96, 082102 (2010)
Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of the spin Seebeck effect. Nature (London) 455, 778 (2008)
Dubi, Y., Di Ventra, M.: Thermospin effects in a quantum dot connected to ferromagnetic leads. Phys. Rev. B. 79, 081302 (2009)
Liu, Y.S., Chi, F., Yang, X.F., Feng, J.F.: Pure spin thermoelectric generator based on a rashba quantum dot molecule. J. Appl. Phys. 109, 053712 (2011)
Rejec, T., Mravlje, J., Ramšak, A.: Spin thermopower in interacting quantum dots. Phys. Rev. B. 109, 053712 (2011)
Trocha, P., Barnaś, J.: Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena. Phys. Rev. B. 85, 085408 (2012)
Glazman, L.I., Matveev, K.A.: Coulomb correlations in the tunneling through resonance centers. Pis’ma Zh. Eksp. Teor. Fiz. 48, 403–406 (1998)
Rudziński, W., Barnaś, J.: Tunnel magnetoresistance in ferromagnetic junctions: tunneling through a single discrete level. Phys. Rev. B 64, 085318 (2001)
Jia, L., Jie, C., Song, W.: External magnetic field on the thermoelectric and thermospin effect in a quantum dot. Phys. Scr. 89, 085701 (2014)
Acknowledgments
This work is supported by the National Natural Science Foundation of China Project (Grant No. 11147010), the Natural Science Foundation of Inner Mongolia (Grant No. 2012MS0113), the Research Program of Higher Education of Inner Mongolia Autonomous Region (Grant No. NJZY12111) and the Inner Mongolia autonomous region graduate education innovation Projects (Grant No. S20141012709).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, J., Cheng, J. A quantum dot spin qubit with thermal bias. Quantum Inf Process 14, 479–489 (2015). https://doi.org/10.1007/s11128-014-0873-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0873-0