Skip to main content
Log in

Quantum correlation swapping

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlations (QCs), including quantum entanglement and those different, are important quantum resources and have attracted much attention recently. Quantum entanglement swapping as a kernel technique has already been applied to quantum repeaters for successfully generating long-distance shared maximally entangled qubit states. Long-distance shared QCs containing shared entanglements are useful and important for some quantum information processing in future quantum networks. In this paper, the concept of quantum entanglement repeater is extended to that of QC repeater by generalizing quantum entanglement swapping to QC swapping. Specifically, the swapping of QCs in a pair of Werner states through a local bipartite von Neumann measurement is treated. Four different QC measures, i.e., entanglement of formation (William in Phys Rev Lett 80:2245, 1998), quantum discord (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008) and ameliorated MID (Girolami et al. in J Phys A 44:352002, 2011), are employed to characterize and quantify QCs. Properties and thresholds of all QCs which occur in the swapping process are revealed, and two different phenomena are exposed and explained. It is found that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed; however, its amount cannot exceed the minimum one among the QCs in the two initial states and in the measuring state as far as the four quantifiers are concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Ekert, A.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  MATH  Google Scholar 

  8. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  9. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  10. Furusawa, A., et al.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  11. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  14. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  17. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  18. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  20. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  21. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  22. Munro, W.J., Van, M.R., et al.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)

    Article  ADS  Google Scholar 

  23. Zukowski, M., Zeilinger, A., et al.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  24. Goebel, A.M., Wagenknecht, C., Zhang, Q., et al.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)

    Article  ADS  Google Scholar 

  25. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  26. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  27. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  28. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  30. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)

    Article  Google Scholar 

  31. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  33. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  34. Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger–Horne–Zeilinger type states. Phys. Rev. A 84, 062328 (2011)

    Article  ADS  Google Scholar 

  35. Ye, B.L., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 12, 2355 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Tang, H.J., Liu, Y.M., Chen, J.L., Ye, B.L., Zhang, Z.J.: Analytic expressions of discord and geometric discord in Werner derivatives. Quantum Inf. Process. 13, 1331 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  38. Dakic, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  39. Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)

    Article  ADS  Google Scholar 

  40. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  41. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  42. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  43. Maziero, J., Werlang, T., Fanchini, F.F., Céleri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  44. Fanchini, F.F., Werlang, T., Brasil, C.A., et al.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  45. Streltsov, A., Kampermann, H., Bruss, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)

    Article  ADS  Google Scholar 

  46. Hu, X.Y., et al.: Necessary and sufficient condition for Markovian-dissipative-dynamics-induced quantum discord. Phys. Rev. A 84, 022113 (2011)

    Article  ADS  Google Scholar 

  47. Campbell, S., Apollaro, T.J.G., et al.: Propagation of nonclassical correlations across a quantum spin chain. Phys. Rev. A 84, 052316 (2011)

    Article  ADS  Google Scholar 

  48. Hu, X.Y., et al.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)

    Article  ADS  Google Scholar 

  49. Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012)

    Article  ADS  Google Scholar 

  50. Ciccarello, F., Giovannetti, V.: Local-channel-induced rise of quantum correlations in continuous variable systems. Phys. Rev. A 85, 022108 (2012)

    Article  ADS  Google Scholar 

  51. Gessner, M., Laine, E.M., Breuer, H.P., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012)

    Article  ADS  Google Scholar 

  52. Madsen, L.S., Berni, A., Lassen, M., Andersen, U.L.: Experimental investigation of the evolution of Gaussian quantum discord in an open system. Phys. Rev. Lett. 109, 030402 (2012)

    Article  ADS  Google Scholar 

  53. Zou, C., Chen, X., et al.: Photonic simulation of system–environment interaction: non-Markovian processes and dynamical decoupling. Phys. Rev. A 88, 063806 (2013)

    Article  ADS  Google Scholar 

  54. Dajka, J., et al.: Swapping of correlations via teleportation with decoherence. Phys. Rev. A 87, 022301 (2013)

    Article  ADS  Google Scholar 

  55. Lanyon, B.P., Jurcevic, P., Hempel, C., et al.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)

    Article  ADS  Google Scholar 

  56. Vogl, U., Glasser, R.T., Glorieux, Q., et al.: Experimental characterization of Gaussian quantum discord generated by four-wave mixing. Phys. Rev. A 87, 010101(R) (2013)

    Article  ADS  Google Scholar 

  57. Benedetti, C., Shurupov, A.P., Paris, M.G.A., et al.: Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 87, 052136 (2013)

    Article  ADS  Google Scholar 

  58. Xie, C.M., Liu, Y.M., Li, G.F., Zhang, Z.J.: A note on quantum correlations in Werner states under two collective noises. Quantum Inf. Process. (2014). doi:10.1007/s11128-014-0822-y

  59. William, K.W.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  60. Gross, D., Flammia, S.T., Eisert, J.: Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  61. Modlwska, J., Grudka, A.: Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008)

    Article  ADS  Google Scholar 

  62. Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11375011 and 11372122, the Natural Science Foundation of Anhui province under Grant No. 1408085MA12, and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Appendices

Appendix 1

Partial derivative in Sect. 3.2 for OQD measure. Let \(\varDelta _0 =q_0^2 -4\mathcal{G}(f_2,f_0,\alpha ) \mathcal{G}(f_3,f_1,\alpha ) +\zeta \cos ^2\alpha \sin ^2\alpha \) and \(\varDelta _1 =q_1^2 -4\mathcal{G}( f_0,f_2,\alpha ) \mathcal{G}(f_1,f_3,\alpha ) +\zeta \cos ^2\alpha \sin ^2\alpha \). Easily, one can arrive at

$$\begin{aligned} \frac{\hbox {d}\varDelta _0}{\hbox {d} \alpha }&= \frac{1}{4}\sin \alpha \cos \alpha \left\{ [ 2(f_0f_3+f_1 f_2- 2f_2 f_3 ) +f_{23}(f_{23}-f_{01})]\sin ^2 \alpha \right. \nonumber \\&\left. \quad +\,[2(2f_0 f_1 -f_1f_2-f_0f_3)+ f_{01}(f_{23}-f_{01} ) ]\cos ^2 \alpha \right\} \nonumber \\&\quad +\,4\kappa (1-\kappa )x^{2}y^{2} \sin 2\alpha \cos 2\alpha , \end{aligned}$$
(64)
$$\begin{aligned} \frac{\hbox {d}\varDelta _1}{\hbox {d} \alpha }&= -\frac{1}{4}\sin \alpha \cos \alpha \left\{ [2(2f_0 f_1 -f_1 f_2- f_0f_3 )+( f_{23}-f_{01} )f_{01} \sin ^2 \alpha \right. \nonumber \\&\left. \quad +\,\ [2( f_0 f_3 + f_1 f_3-2f_2 f_3)+( f_{23}-f_{01} )f_{23} ] \cos ^2 \alpha \right\} \nonumber \\&\quad +\,\ 4\kappa (1-\kappa )x^{2}y^{2} \sin 2\alpha \cos 2\alpha . \end{aligned}$$
(65)

Using these two derivatives, one can further get

$$\begin{aligned}&\frac{\hbox {d} \{S[\rho '_{d}(x,y,\kappa )]- S[\rho '_{bd}(x,y,\kappa )|\{\Pi _{b}^{(j)}\}]\}}{\hbox {d} \alpha }\nonumber \\&\quad = \frac{1}{2} (-f_{01} + f_{23} )\sin \alpha \cos \alpha [ (- \lambda _0 \log _2 \lambda _0 - \lambda _1 \log _2 \lambda _1 +\eta _0 \log _2 \eta _0 +\eta _1 \log _2 \eta _1)\nonumber \\&\qquad -\,\frac{\sqrt{\varDelta _0}}{2q_0} (- \log _2 \lambda _0+ \log _2 \lambda _1)+ \frac{\sqrt{\varDelta _1}}{ 2q_1}(- \log _2 \eta _0+ \log _2 \eta _1)]\nonumber \\&\qquad +\, \frac{\varDelta _0^{-1/2}}{4q_0}[- \log _2 \lambda _0+ \log _2 \lambda _1]\frac{d\varDelta _0}{d \alpha } + \frac{\varDelta _1^{-1/2}}{4q_1}[- \log _2 \eta _0+ \log _2 \eta _1]\frac{d\varDelta _1}{d \alpha }. \end{aligned}$$
(66)

Obviously, if \(\alpha = 0\) or \(\alpha = \frac{\pi }{4}\), then \(\frac{\hbox {d} \{S[\rho '_{d}(x,y,\kappa )]- S[\rho '_{bd}(x,y,\kappa )|\{\Pi _{b}^{(j)}\}]\}}{\hbox {d} \alpha }=0\).

Appendix 2

Partial derivatives in Sect. 3.4 for AMID measure.

$$\begin{aligned} \frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \alpha _1}&= - \frac{1}{2} \sin {\alpha _1}\cos {\alpha _1}( f_{23}-f_{01})\left( \log _2 p_b^{(0)}-\log _2 p_b^{(1)}\right) \nonumber \\&\quad +\,\left\{ \frac{1}{2}\left[ ( f_2 -f_0) \cos ^2{\alpha _2}+( f_3 -f_1)\sin ^2{\alpha _2}\right] \sin \alpha _1 \cos \alpha _1\nonumber \right. \\&\quad \left. +\,\sqrt{\kappa (1-\kappa )}xy \cos 2\alpha _1\sin {2\alpha _2}\cos \omega \right\} \left( \log _2 p_{bd}^{(00)}-\log _2 p_{bd}^{(10)} \right) \nonumber \\&\quad +\,\left[ \frac{1}{2} \left[ ( f_2 -f_0) \sin ^2{\alpha _2}+( f_3 -f_1)\cos ^2{\alpha _2}\right] \sin \alpha _1 \cos \alpha _1\nonumber \right. \\&\quad \left. -\,\sqrt{\kappa (1-\kappa )}xy \cos 2\alpha _1\sin {2\alpha _2}\cos \omega \right] \left( \log _2 p_{bd}^{(01)} -\log _2 p_{bd}^{(11)}\right) ,\end{aligned}$$
(67)
$$\begin{aligned} \frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \alpha _2 }&= - \frac{1}{2} \sin {\alpha _2}\cos {\alpha _2} ( f_{13}-f_{02})\left( \log _2 p_d^{(0)}-\log _2 p_d^{(1)}\right) \nonumber \\&\quad +\,\left\{ 2 [\mathcal{G}(f_3,f_1,\alpha _1)-\mathcal{G}(f_2,f_0,\alpha _1)]\sin {\alpha _2}\cos {\alpha _2}\nonumber \right. \\&\quad \left. +\,\sqrt{\kappa (1-\kappa )}xy\sin {2\alpha _1}\cos {2\alpha _2}\cos \omega \right\} \left( \log _2 p_{bd}^{(00)}-\log _2 p_{bd}^{(01)} \right) \nonumber \\&\quad +\,\left\{ 2 [\mathcal{G}(f_1,f_3,\alpha _1)-\mathcal{G}(f_0,f_2,\alpha _1)]\sin {\alpha _2}\cos {\alpha _2}\nonumber \right. \\&\quad \left. -\,\sqrt{\kappa (1-\kappa )}xy\sin {2\alpha _1}\cos {2\alpha _2}\cos \omega \right\} \left( \log _2 p_{bd}^{(10)} -\log _2 p_{bd}^{(11)}\right) ,\end{aligned}$$
(68)
$$\begin{aligned} \frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \omega }&= \frac{1}{2}\sqrt{\kappa (1-\kappa )}xy\sin {2\alpha _1}\sin {2\alpha _2}\sin \omega \nonumber \\&\left[ \log _2 p_{bd}^{(01)}+ \log _2 p_{bd}^{(10)} -\log _2 p_{bd}^{(00)}-\log _2 p_{bd}^{(11)}\right] . \end{aligned}$$
(69)

If \((\alpha _1, \alpha _2, \omega )=(0,0,0)\) or \((\alpha _1, \alpha _2, \omega )=(\frac{\pi }{4},\frac{\pi }{4},0)\), then \(\frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \alpha _1 }\) \(=\frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \alpha _2 } =\frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \omega }=0\).

Appendix 3

Prove \(\frac{ \partial \theta _{bd}(x,y,\kappa )}{\partial x} > 0\), where \(\theta _{bd}= 2 xy \sqrt{\kappa (1-\kappa )}-\frac{1}{2} \sqrt{(1-x^2)(1-y^2)+4\kappa (1-\kappa )(x-y)^2}\). Let \(\varDelta =\sqrt{(1-x^2)(1-y^2)+4\kappa (1-\kappa )(x-y)^2}\). Easily, one can get

$$\begin{aligned} \frac{\partial \theta _{bd}(x,y,\kappa )}{\partial x} =\frac{8\varDelta y \sqrt{\kappa (1-\kappa )}+2x(1-y^2)- 8\kappa (1-\kappa )(x-y)}{4\varDelta }. \end{aligned}$$
(70)

Since \(\varDelta >2\sqrt{\kappa (1-\kappa )}|x-y|>0\), one is readily to find

$$\begin{aligned} \frac{ \partial \theta _{bd}(x,y,\kappa )}{\partial x}>\frac{N}{4\varDelta }, \end{aligned}$$
(71)

where

$$\begin{aligned} N =16 y \kappa (1-\kappa )|x-y|+2x(1-y^2)-8\kappa (1-\kappa )(x-y). \end{aligned}$$
(72)

Easily, one can conclude that,

  1. (1)

    If \(x\le y\), then \(N\ge 0\);

  2. (2)

    If \(x>y\), then \(N\) can be rewritten as \(N \equiv 8(2y-1) \kappa (1-\kappa )(x-y)\) \(+2x(1-y^2)\). If \(y\ge \frac{1}{2}\), then \(N\ge 0\). Otherwise, \(y<\frac{1}{2}\), then \(N > 2[(2y-1)(x-y)+x(1-y^2)]>2[\frac{2}{3} -2y^2+y-xy^2]\), where \(3xy>1\) is used. Because \(x\in (\frac{1}{3},1]\), it is obvious that \(F(y)=\frac{2}{3} -2y^2+y-xy^2 >0\) provided that \(y\in \left( \frac{1-\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}, \frac{1+\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}\right) \). Furthermore, because \(y\in (\frac{1}{3},1]\), one can easily verify that \(y\in \left( \frac{1}{3}, \frac{1}{2}\right) \subset \left( \frac{1-\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}, \frac{1+\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}\right) \) for any \(x\in (\frac{1}{3},1]\). This means that in this case \(N>0\), too.

Integrating all the possible cases above, one is readily to get \(\frac{ \partial \theta _{bd}(x,y,\kappa )}{\partial x} > 0\). \(\square \)

Appendix 4

Prove \(\frac{\partial \varDelta }{\partial \kappa } > 0\), \(\frac{\partial \varDelta }{\partial x} > 0\) and \(\frac{\partial \varDelta }{\partial y} > 0\). From the definition \(\xi \equiv f_3-f_0+\varDelta \) and some definitions below Eq. (25), one can get

$$\begin{aligned} \varDelta ^2+ 4\varDelta (1-2\kappa )(x+y) - 64\kappa (1-\kappa )x^{2}y^{2}=0. \end{aligned}$$
(73)

Considering \(\varDelta > 0\), by solving Eq. (73), one can get

$$\begin{aligned} \varDelta = -2(1-2\kappa )(x+y) + 2\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2} }. \end{aligned}$$
(74)

The partial differential of \(\varDelta \) about \(\kappa \) is

$$\begin{aligned} \frac{\partial \varDelta }{\partial \kappa }&= 4(x+y) + \frac{-4(1-2\kappa )(x+y)^2 + 16(1-2\kappa )x^{2}y^{2} }{\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2} }}\nonumber \\&= \frac{ 4(x+y)\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2}} -4(1-2\kappa )(x+y)^2 + 16(1-2\kappa )x^{2}y^{2} }{\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2} }}\nonumber \\&> \frac{ 16(1-2\kappa )x^{2}y^{2} }{\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2} }}. \end{aligned}$$
(75)

Considering \(\kappa \in (0,\frac{1}{2}]\), \(x,y \in (0,1]\), one can get \(\frac{\partial \varDelta }{\partial \kappa } > 0\).

The partial differential of \(\varDelta \) about \(x\) is

$$\begin{aligned} \frac{\partial \varDelta }{\partial x}&= -2(1-2\kappa ) +\frac{2(1-2\kappa )^2(x+y) + 32\kappa (1-\kappa )x y^{2} }{\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2} }}\nonumber \\&= \frac{2(1-2\kappa )^2(x+y) + 32\kappa (1-\kappa )x y^{2} -2(1-2\kappa )\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2} } }{\sqrt{(1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2} }}.\nonumber \\ \end{aligned}$$
(76)

Notice that there are two factors in the numerator in Eq. (76). Let the former’s square subtracts the latter’s, one can get

$$\begin{aligned}&\left[ 2(1-2\kappa )^2(x+y) + 32\kappa (1-\kappa )x y^{2}\right] ^2 -4(1-2\kappa )^2\nonumber \\&\quad \left[ (1-2\kappa )^2 (x+y)^2+ 16\kappa (1-\kappa )x^{2}y^{2}\right] \nonumber \\&\quad = 64 \left[ 16\kappa ^2(1-\kappa )^2 x^2 y^{4} + (2 x y^{2}-x^{2}y^{2})\kappa (1-\kappa )(1-2\kappa )^2\right] . \end{aligned}$$
(77)

Considering \(\kappa \in (0,\frac{1}{2}]\), \(x,y \in (0,1]\), one can conclude that the function in Eq. (77) is positive. Finally, one can get \(\frac{\partial \varDelta }{\partial x} > 0\). By using the similar method, one can obtain \(\frac{\partial \varDelta }{\partial y} > 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Liu, Y., Xing, H. et al. Quantum correlation swapping. Quantum Inf Process 14, 653–679 (2015). https://doi.org/10.1007/s11128-014-0875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0875-y

Keywords

Navigation