Abstract
Quantum correlations (QCs), including quantum entanglement and those different, are important quantum resources and have attracted much attention recently. Quantum entanglement swapping as a kernel technique has already been applied to quantum repeaters for successfully generating long-distance shared maximally entangled qubit states. Long-distance shared QCs containing shared entanglements are useful and important for some quantum information processing in future quantum networks. In this paper, the concept of quantum entanglement repeater is extended to that of QC repeater by generalizing quantum entanglement swapping to QC swapping. Specifically, the swapping of QCs in a pair of Werner states through a local bipartite von Neumann measurement is treated. Four different QC measures, i.e., entanglement of formation (William in Phys Rev Lett 80:2245, 1998), quantum discord (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008) and ameliorated MID (Girolami et al. in J Phys A 44:352002, 2011), are employed to characterize and quantify QCs. Properties and thresholds of all QCs which occur in the swapping process are revealed, and two different phenomena are exposed and explained. It is found that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed; however, its amount cannot exceed the minimum one among the QCs in the two initial states and in the measuring state as far as the four quantifiers are concerned.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)
Ekert, A.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)
Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)
Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)
Furusawa, A., et al.: Unconditional quantum teleportation. Science 282, 706 (1998)
Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)
Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)
Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)
Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)
Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)
Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)
Munro, W.J., Van, M.R., et al.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)
Zukowski, M., Zeilinger, A., et al.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)
Goebel, A.M., Wagenknecht, C., Zhang, Q., et al.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)
Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)
Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)
Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)
Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)
Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)
Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)
Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger–Horne–Zeilinger type states. Phys. Rev. A 84, 062328 (2011)
Ye, B.L., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 12, 2355 (2013)
Tang, H.J., Liu, Y.M., Chen, J.L., Ye, B.L., Zhang, Z.J.: Analytic expressions of discord and geometric discord in Werner derivatives. Quantum Inf. Process. 13, 1331 (2014)
Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)
Dakic, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)
Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)
Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)
Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)
Maziero, J., Werlang, T., Fanchini, F.F., Céleri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)
Fanchini, F.F., Werlang, T., Brasil, C.A., et al.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)
Streltsov, A., Kampermann, H., Bruss, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)
Hu, X.Y., et al.: Necessary and sufficient condition for Markovian-dissipative-dynamics-induced quantum discord. Phys. Rev. A 84, 022113 (2011)
Campbell, S., Apollaro, T.J.G., et al.: Propagation of nonclassical correlations across a quantum spin chain. Phys. Rev. A 84, 052316 (2011)
Hu, X.Y., et al.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)
Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012)
Ciccarello, F., Giovannetti, V.: Local-channel-induced rise of quantum correlations in continuous variable systems. Phys. Rev. A 85, 022108 (2012)
Gessner, M., Laine, E.M., Breuer, H.P., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012)
Madsen, L.S., Berni, A., Lassen, M., Andersen, U.L.: Experimental investigation of the evolution of Gaussian quantum discord in an open system. Phys. Rev. Lett. 109, 030402 (2012)
Zou, C., Chen, X., et al.: Photonic simulation of system–environment interaction: non-Markovian processes and dynamical decoupling. Phys. Rev. A 88, 063806 (2013)
Dajka, J., et al.: Swapping of correlations via teleportation with decoherence. Phys. Rev. A 87, 022301 (2013)
Lanyon, B.P., Jurcevic, P., Hempel, C., et al.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)
Vogl, U., Glasser, R.T., Glorieux, Q., et al.: Experimental characterization of Gaussian quantum discord generated by four-wave mixing. Phys. Rev. A 87, 010101(R) (2013)
Benedetti, C., Shurupov, A.P., Paris, M.G.A., et al.: Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 87, 052136 (2013)
Xie, C.M., Liu, Y.M., Li, G.F., Zhang, Z.J.: A note on quantum correlations in Werner states under two collective noises. Quantum Inf. Process. (2014). doi:10.1007/s11128-014-0822-y
William, K.W.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Gross, D., Flammia, S.T., Eisert, J.: Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009)
Modlwska, J., Grudka, A.: Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008)
Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)
Acknowledgments
This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11375011 and 11372122, the Natural Science Foundation of Anhui province under Grant No. 1408085MA12, and the 211 Project of Anhui University.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
Partial derivative in Sect. 3.2 for OQD measure. Let \(\varDelta _0 =q_0^2 -4\mathcal{G}(f_2,f_0,\alpha ) \mathcal{G}(f_3,f_1,\alpha ) +\zeta \cos ^2\alpha \sin ^2\alpha \) and \(\varDelta _1 =q_1^2 -4\mathcal{G}( f_0,f_2,\alpha ) \mathcal{G}(f_1,f_3,\alpha ) +\zeta \cos ^2\alpha \sin ^2\alpha \). Easily, one can arrive at
Using these two derivatives, one can further get
Obviously, if \(\alpha = 0\) or \(\alpha = \frac{\pi }{4}\), then \(\frac{\hbox {d} \{S[\rho '_{d}(x,y,\kappa )]- S[\rho '_{bd}(x,y,\kappa )|\{\Pi _{b}^{(j)}\}]\}}{\hbox {d} \alpha }=0\).
Appendix 2
Partial derivatives in Sect. 3.4 for AMID measure.
If \((\alpha _1, \alpha _2, \omega )=(0,0,0)\) or \((\alpha _1, \alpha _2, \omega )=(\frac{\pi }{4},\frac{\pi }{4},0)\), then \(\frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \alpha _1 }\) \(=\frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \alpha _2 } =\frac{\partial \mathcal{C} [\rho '_{bd}(x,y,\kappa )]}{\partial \omega }=0\).
Appendix 3
Prove \(\frac{ \partial \theta _{bd}(x,y,\kappa )}{\partial x} > 0\), where \(\theta _{bd}= 2 xy \sqrt{\kappa (1-\kappa )}-\frac{1}{2} \sqrt{(1-x^2)(1-y^2)+4\kappa (1-\kappa )(x-y)^2}\). Let \(\varDelta =\sqrt{(1-x^2)(1-y^2)+4\kappa (1-\kappa )(x-y)^2}\). Easily, one can get
Since \(\varDelta >2\sqrt{\kappa (1-\kappa )}|x-y|>0\), one is readily to find
where
Easily, one can conclude that,
-
(1)
If \(x\le y\), then \(N\ge 0\);
-
(2)
If \(x>y\), then \(N\) can be rewritten as \(N \equiv 8(2y-1) \kappa (1-\kappa )(x-y)\) \(+2x(1-y^2)\). If \(y\ge \frac{1}{2}\), then \(N\ge 0\). Otherwise, \(y<\frac{1}{2}\), then \(N > 2[(2y-1)(x-y)+x(1-y^2)]>2[\frac{2}{3} -2y^2+y-xy^2]\), where \(3xy>1\) is used. Because \(x\in (\frac{1}{3},1]\), it is obvious that \(F(y)=\frac{2}{3} -2y^2+y-xy^2 >0\) provided that \(y\in \left( \frac{1-\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}, \frac{1+\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}\right) \). Furthermore, because \(y\in (\frac{1}{3},1]\), one can easily verify that \(y\in \left( \frac{1}{3}, \frac{1}{2}\right) \subset \left( \frac{1-\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}, \frac{1+\sqrt{1+\frac{8}{3}(2+x)}}{2(2+x)}\right) \) for any \(x\in (\frac{1}{3},1]\). This means that in this case \(N>0\), too.
Integrating all the possible cases above, one is readily to get \(\frac{ \partial \theta _{bd}(x,y,\kappa )}{\partial x} > 0\). \(\square \)
Appendix 4
Prove \(\frac{\partial \varDelta }{\partial \kappa } > 0\), \(\frac{\partial \varDelta }{\partial x} > 0\) and \(\frac{\partial \varDelta }{\partial y} > 0\). From the definition \(\xi \equiv f_3-f_0+\varDelta \) and some definitions below Eq. (25), one can get
Considering \(\varDelta > 0\), by solving Eq. (73), one can get
The partial differential of \(\varDelta \) about \(\kappa \) is
Considering \(\kappa \in (0,\frac{1}{2}]\), \(x,y \in (0,1]\), one can get \(\frac{\partial \varDelta }{\partial \kappa } > 0\).
The partial differential of \(\varDelta \) about \(x\) is
Notice that there are two factors in the numerator in Eq. (76). Let the former’s square subtracts the latter’s, one can get
Considering \(\kappa \in (0,\frac{1}{2}]\), \(x,y \in (0,1]\), one can conclude that the function in Eq. (77) is positive. Finally, one can get \(\frac{\partial \varDelta }{\partial x} > 0\). By using the similar method, one can obtain \(\frac{\partial \varDelta }{\partial y} > 0\). \(\square \)
Rights and permissions
About this article
Cite this article
Xie, C., Liu, Y., Xing, H. et al. Quantum correlation swapping. Quantum Inf Process 14, 653–679 (2015). https://doi.org/10.1007/s11128-014-0875-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0875-y