Skip to main content

Advertisement

Log in

Hyperentanglement purification with linear optics assisted by W-states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hyperentanglement has attracted much attention in recent years for its promising applications. Various schemes on topics of manipulating, concentrating, and purifying hyperentangled photons have been discussed widely using nonlinear optics. However, the fidelities and experimental feasibilities are unsatisfied due to the low efficiency of the nonlinear optical process. In order to overcome this problem, we present an one-step hyperentanglement purification protocol with linear optics for non-local photon systems in mixed polarization- and spatial-mode- hyperentangled states. Errors in both polarization and spatial-mode degrees of freedom can be purified simultaneously with the assistance of W-states. We also discuss the efficiencies and experimental feasibilities of this linear optics-based protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Liu, X., Long, G., Tong, D., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  5. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  6. Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44(11–12), 2173–2184 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412(6844), 313–316 (2001)

    Article  ADS  Google Scholar 

  8. Fiorentino, M., Wong, F.N.: Deterministic controlled-not gate for single-photon two-qubit quantum logic. Phys. Rev. Lett. 93(7), 070502 (2004)

    Article  ADS  Google Scholar 

  9. Ali-Khan, I., Broadbent, C.J., Howell, J.C.: Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98(6), 060503 (2007)

    Article  ADS  Google Scholar 

  10. Menicucci, N.C., Flammia, S.T., Pfister, O.: One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101(13), 130501 (2008)

    Article  ADS  Google Scholar 

  11. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282–286 (2008)

    Article  Google Scholar 

  12. Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N., Zeilinger, A.: Discrete tunable color entanglement. Phys. Rev. Lett. 103(25), 253601 (2009)

    Article  ADS  Google Scholar 

  13. Yan, H., Zhang, S., Chen, J., Loy, M., Wong, G.K., Du, S.: Generation of narrow-band hyperentangled nondegenerate paired photons. Phys. Rev. Lett. 106(3), 033601 (2011)

    Article  ADS  Google Scholar 

  14. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  15. Kwiat, P.G., Weinfurter, H.: Embedded bell-state analysis. Phys. Rev. A 58(4), R2623 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Walborn, S., Pádua, S., Monken, C.: Hyperentanglement-assisted bell-state analysis. Phys. Rev. A 68(4), 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics bell state analysis. Phys. Rev. Lett. 96(19), 190501 (2006)

    Article  ADS  Google Scholar 

  18. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement. Phys. Rev. A 75(4), 042317 (2007)

    Article  ADS  Google Scholar 

  19. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 032307 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044305 (2010)

    Article  ADS  Google Scholar 

  21. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044304 (2010)

    Article  ADS  Google Scholar 

  22. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  23. Wang, T.J., Wang, C.: Parallel quantum computing teleportation for spin qubits in quantum dot and microcavity coupled system. IEEE J. Sel. Top. Quantum Electron. 21(3), 1–7 (2015)

    Article  Google Scholar 

  24. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  25. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818 (1996)

    Article  ADS  Google Scholar 

  26. Pan, J.W., Simon, C., Brukner, Č., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410(6832), 1067–1070 (2001)

    Article  ADS  Google Scholar 

  27. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89(25), 257901 (2002)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-kerr nonlinearity. Phys. Rev. A 77(4), 042308 (2008)

    Article  ADS  Google Scholar 

  29. Yamamoto, T., Koashi, M., Özdemir, Ş.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421(6921), 343–346 (2003)

    Article  ADS  Google Scholar 

  30. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond nv centers inside photonic crystal cavities. Laser Phys. Lett. 10(11), 115201 (2013)

    Article  ADS  Google Scholar 

  31. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  32. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  33. Rohde, P.P., Ralph, T.C., Munro, W.J.: Practical limitations in optical entanglement purification. Phys. Rev. A 73(3), 030301 (2006)

    Article  ADS  Google Scholar 

  34. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932–5935 (1998)

    Article  ADS  Google Scholar 

  35. Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79(4), 042336 (2009)

    Article  ADS  Google Scholar 

  36. Wang, H.F., Zhang, S., Zhu, A.D., Yi, X.X., Yeon, K.H.: Local conversion of four einstein-podolsky-rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors. Opt. Express 19(25), 25433–25440 (2011)

    Article  ADS  Google Scholar 

  37. Zou, X., Pahlke, K., Mathis, W.: Generation of an entangled four-photon w state. Phys. Rev. A 66(4), 044302 (2002)

    Article  ADS  Google Scholar 

  38. Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77(3), 030302 (2008)

    Article  ADS  Google Scholar 

  39. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the w-state quantum-network-fusion process with a single fredkin gate. Phys. Rev. A 87(3), 032331 (2013)

    Article  ADS  Google Scholar 

  40. Tashima, T., Wakatsuki, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two einstein-podolsky-rosen photon pairs into a three-photon w state. Phys. Rev. Lett. 102(13), 130502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic w or bell states. Quantum Inf. Process. 12(9), 2965–2975 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, Ş.K.: Fusing multiple w states simultaneously with a fredkin gate. Phys. Rev. A 89, 042311 (2014)

    Article  ADS  Google Scholar 

  43. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135 (2007)

    Article  ADS  Google Scholar 

  44. Calkins, B., Mennea, P.L., Lita, A.E., Metcalf, B.J., Kolthammer, W.S., Lamas-Linares, A., Spring, J.B., Humphreys, P.C., Mirin, R.P., Gates, J.C., Smith, P.G.R., Walmsley, I.A., Gerrits, T., Nam, S.W.: High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21(19), 22657–22670 (2013)

    Article  ADS  Google Scholar 

  45. E, K.B., L, Y.Z., J, S.A.: An avalanche-photodiode-based photon-number-resolving detector. Nat. Photon. 2(7), 425–428 (2008)

    Article  Google Scholar 

  46. Bimbard, E., Boddeda, R., Vitrant, N., Grankin, A., Parigi, V., Stanojevic, J., Ourjoumtsev, A., Grangier, P.: Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. Phys. Rev. Lett. 112, 033601 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by China National Natural Science Foundation Grant Nos. 11347211, 61471050 and 11404031. Beijing Higher Education Young Elite Teacher Project No. YETP0456, and the Fundamental Research Funds for the Central Universities No. 2014RC0903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, S., Wang, C. & Wang, TJ. Hyperentanglement purification with linear optics assisted by W-states. Quantum Inf Process 14, 623–634 (2015). https://doi.org/10.1007/s11128-014-0878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0878-8

Keywords