Skip to main content
Log in

Efficient two-dimensional atom localization via an external coherent magnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Objective

The primary objective of this study was to investigate the two-dimensional (2D) atom localization via a coherent magnetic field in a closed three-level atomic system.

Introduction

Two-dimensional (2D) atom localization in multi-level atomic systems has been studied in recent years because of its unique properties and extensive applications. However, to the best of our knowledge, no further theoretical or experimental work has been carried out to study such 2D atom localization in a closed three-level atomic system in the presence of the coherent magnetic field that motivates the current work.

Methods

As for 2D atom localization, the conditional position probability distribution, i.e., the probability of finding the atom at the position in the two orthogonal standing-wave fields when the atom is found in its internal excited state. In this paper, 2D atom localization is obtained via measuring the population in the excited state, which is solved via the density-matrix equations in dipole and rotating-wave approximations.

Results

Results The precision and spatial resolution of the 2D atom localization are improved via properly adjusting the controllable parameters of the system such as the detunings and intensities of the corresponding applied fields as well as the collective phase of the probe and standing-wave fields.

Conclusions

Due to the position-dependent atom-field interaction, the position information of the atom in the standing-wave fields can be obtained by means of the phase-sensitive excited state population. More importantly, the maximal probability of finding an atom within the sub-half-wavelength domain of the standing waves can reach 100 %. Thus, our scheme may be helpful in observing precision quantum measurement and computation for quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phillips, W.D.: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 73, 721–741 (1998)

    Article  ADS  Google Scholar 

  2. Collins, G.P.: Experimenters produce new Bose–Einstein condensate (s) and possible puzzles for theorists. Phys. Today 49, 18–21 (1996)

    Google Scholar 

  3. Johnson, K.S.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)

    Article  ADS  Google Scholar 

  4. Kapale, K.T., Qamar, S., Zubairy, M.S.: Spectroscopic measurement of an atomic wave function. Phys. Rev. A 67, 023805 (2003)

    Article  ADS  Google Scholar 

  5. Mompart, J., Ahufinger, V., Birkl, G.: Coherent patterning of matter waves with subwavelength localization. Phys. Rev. A 79, 053638 (2009)

    Article  ADS  Google Scholar 

  6. Quadt, R., Collett, M., Walls, D.F.: Measurement of atomic motion in a standing light field by homodyne detection. Phys. Rev. Lett. 74, 351–354 (1995)

    Article  ADS  Google Scholar 

  7. Brune, M., Haroche, S., Lefevre, V., Raimond, J.M., Zagury, N.: Measurement of atomic motion in a standing light field by homodyne detection. Phys. Rev. Lett. 65, 976–979 (1990)

    Article  ADS  Google Scholar 

  8. Kunze, S., Dieckmann, K., Rempe, G.: Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038–2041 (1997)

    Article  ADS  Google Scholar 

  9. Rudy, P., Ejnisman, R., Bigelow, N.P.: Fluorescence investigation of parametrically excited motional wave packets in optical lattices. Phys. Rev. Lett. 78, 4906–4909 (1997)

    Article  ADS  Google Scholar 

  10. Abfalterer, R., Keller, C., Bernet, S., Oberthaler, M.K., Schmiedmayer, J., Zeilinger, A.: Nanometer definition of atomic beams with masks of light. Phys. Rev. A 56, R4365–R4368 (1997)

    Article  ADS  Google Scholar 

  11. Keller, C., Abfalterer, R., Bernet, S., Oberthaler, M.K., Schmiedmayer, J., Zeilinger, A.: Absorptive masks of light: a useful tool for spatial probing in atom optics. J. Vac. Sci. Technol. B 16, 3850–3854 (1998)

    Article  Google Scholar 

  12. Xiao, M., Li, Y.Q., Jin, S.Z., Gea-Banacloche, J.: Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666–669 (1995)

    Article  ADS  Google Scholar 

  13. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

  14. Wang, H., Goorskey, D., Xiao, M.: Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett. 87, 073601 (2001)

    Article  ADS  Google Scholar 

  15. Wu, Y., Yang, X.X.: Highly efficient four-wave mixing in double-Lambda system in ultraslow propagation regime. Phys. Rev. A 70, 053818 (2004)

    Article  ADS  Google Scholar 

  16. Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  17. Wu, Y., Yang, X.X.: Electromagnetically induced transparency in V-, \(\Lambda \)-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  18. Zhang, Y., Brown, A.W., Xiao, M.: Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett. 99, 123603 (2007)

    Article  ADS  Google Scholar 

  19. Wu, Y., Yang, X.X.: Carrier-envelope phase-dependent atomic coherence and quantum beats. Phys. Rev. A 76, 013832 (2007)

    Article  ADS  Google Scholar 

  20. Herkommer, A.M., Schleich, W.P., Zubairy, M.S.: Autler–Townes microscopy on a single atom. J. Mod. Opt. 44, 2507–2513 (1997)

    Article  ADS  Google Scholar 

  21. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Precision localization of single atom using Autler-Townes microscopy. Opt. Commun. 176, 409–416 (2000)

    Article  ADS  Google Scholar 

  22. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Atom localization via resonance fluorescence. Phys. Rev. A 61, 063806 (2000)

    Article  ADS  Google Scholar 

  23. Yang, S., Al-Amri, M., Zubairy, M.S.: Single-atom localization via resonance-fluorescence photon statistics. Phys. Rev. A 85, 023831 (2012)

    Article  ADS  Google Scholar 

  24. Sahrai, M., Tajalli, H., Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72, 013820 (2005)

    Article  ADS  Google Scholar 

  25. Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II. Phys. Rev. A 73, 023813 (2006)

    Article  ADS  Google Scholar 

  26. Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)

    Article  ADS  Google Scholar 

  27. Agarwal, G.S., Kapale, K.T.: Subwavelength atom localization via coherent population trapping. J. Phys. B 39, 3437–3446 (2006)

    Article  ADS  Google Scholar 

  28. Qamar, S., Mehmood, A., Qarmar, S.: Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79, 033848 (2009)

    Article  ADS  Google Scholar 

  29. Qamar, S.: Precision in single atom localization via Raman-driven coherence: role of detuning and phase shift. Phys. Lett. A 377, 1587–1592 (2013)

    Article  ADS  Google Scholar 

  30. Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser field. Phys. Rev. A 81, 033809 (2010)

    Article  ADS  Google Scholar 

  31. Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two-dimensional atom localization via interacting double-dark resonances. J. Opt. Soc. Am. B 28, 622–628 (2011)

    Article  ADS  Google Scholar 

  32. Ding, C.L., Li, J.H., Zhan, Z.M., Yang, X.X.: Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011)

    Article  ADS  Google Scholar 

  33. Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system. J. Opt. Soc. Am. B 28, 10–17 (2011)

    Article  ADS  Google Scholar 

  34. Rahmatullah, Qamar, S.: Two-dimensional atom localization via Raman-driven coherence. Phys. Lett. A 378, 684–690 (2014)

    Article  ADS  Google Scholar 

  35. Ding, C.L., Li, J.H., Yang, X.X., Zhang, D., Xiong, H.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84, 043840 (2011)

    Article  ADS  Google Scholar 

  36. Li, J.H., Yu, R., Liu, M., Ding, C.L., Yang, X.X.: Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–3985 (2011)

    Article  ADS  Google Scholar 

  37. Wan, R.G., Zhang, T.Y., Kou, J.: Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)

    Article  ADS  Google Scholar 

  38. Qamar, S.: Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A 88, 013846 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11205001), Key Science and Technology Program of Anhui Province (Grant No. 1310115197) and the doctoral scientific research foundation of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shui, T., Wang, Z. & Yu, B. Efficient two-dimensional atom localization via an external coherent magnetic field. Quantum Inf Process 14, 929–941 (2015). https://doi.org/10.1007/s11128-014-0899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0899-3

Keywords

Navigation