Abstract
We have studied the thermal entanglement as a function of the temperature for a two-qubits Heisenberg spins system; we have included Dzyaloshinskii–Moriya interaction (DM), an external magnetic field (EMF) and hyperfine interaction due to the nuclear field of the surrounding nuclei. A critical value for the EMF was found, around \(B^{(c)}_{\mathrm{ext},z} \sim 39\) mT, which characterizes two regimes of behavior of the thermal entanglement. Our results show that the DM term acts as a facilitator for the entanglement because it prolongs the nonzero thermal entanglement for larger temperatures. We found that the concurrence as a function of the temperature has a local maximum, for values of the magnetic field larger than the critical field. We also show that the critical temperature \(T_\mathrm{c}\) follows a polynomial growth as a function of the DM term, with characteristic behavior \(T_{\mathrm{c}} \sim \beta _{0}^{2}\), and the hyperfine field implies a critical temperature as a function of the field variance, \(\sigma \) of the form \(T_{\mathrm{c}} \sim \sigma ^{2}\). We show that in this system, the entanglement measure by the concurrence and the one-spin polarization observable exhibit opposite behavior, providing a method to obtain the entanglement from the measurement of an observable.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)
Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Loss, D., DiVicenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)
Peta, J.R., et al.: Double quantum dot as a quantum bit. Science 309, 2180 (2005)
Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133 (1998)
Imamoglu, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)
Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)
Wang, X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)
Arnesen, M.C., et al.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)
Yi, X.X., et al.: Entanglement induced in spin-1/2 particles by a spin chain near its critical points. Phys. Rev. A 74, 054102 (2006)
Porras, D., Cirac, J.I.: Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)
Wang, F., et al.: Anisotropy and magnetic field effects on entanglement of a two-spin (1/2, 1) mixed-spin Heisenberg XY chain. Commun. Theor. Phys. 50, 341 (2008)
Wang, X.: Effects of anisotropy on thermal entanglement. Phys. Lett. A 281, 101 (2001)
Zhang, G.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)
Ma, X.S.: Thermal entanglement of a two-qutrit XX spin chain with Dzialoshinski–Moriya interaction. Opt. Commun. 281, 484 (2008)
Kheirandish, F., et al.: Effect of spin–orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2009)
Akyüz, C., et al.: Thermal entanglement of a two-qutrit Ising system with Dzialoshinski–Moriya interaction. Opt. Commun. 281, 5271 (2008)
li, D.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys.: Condens. Matter 20, 325229 (2008)
Gunlycke, D., et al.: Thermal concurrence mixing in a one-dimensional Ising model. Phys. Rev. A 64, 042302 (2001)
Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)
Zhou, L., et al.: Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phys. Rev. A 68, 024301 (2003)
Sun, Y., et al.: Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field. Phys. Rev. A 68, 044301 (2003)
Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in the Heisenberg model at low temperatures. Phys. Rev. A 70, 052307 (2004)
Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)
Chruscinskim, D., Pytel, J.: Constructing optimal entanglement witnesses. II. Witnessing entanglement in 4N\(\times \)4N systems. Phys. Rev. A 82, 052310 (2010)
Bennet, A., et al.: Experimental semi-device-independent certification of entangled measurements. Phys. Rev. Lett. 113, 080405 (2014)
Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)
Zyczkowski, K., Horodecki, P.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)
Guerrero, R.J., Rojas, F.: Effect of the Dzyaloshinski–Moriya term in the quantum (SWAP)a gate produced with exchange coupling. Phys. Rev. A 77, 012331 (2007)
Elzerman, J.M., et al.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431 (2006)
Merkulov, I.A., et al.: Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002)
Khaetskii, A.V., et al.: Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002)
Khaetskii, A.V., et al.: Electron spin evolution induced by interaction with nuclei in a quantum dot. Phys. Rev. Lett. 67, 195329 (2003)
Coish, W.A., Loss, D.: Hyperfine interaction in a quantum dot: non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004)
Johnson, A.C., et al.: Triplet-singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925 (2005)
Coish, W.A., Loss, D.: Singlet-triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337 (2005)
Klauser, D., et al.: Nuclear spin state narrowing via gate-controlled Rabi oscillations in a double quantum dot. Phys. Rev. B 73, 205302 (2006)
Chuntia, S., et al.: Detection and measurement of the Dzyaloshinskii–Moriya interaction in double quantum dot system. Phys. Rev. B 73, 241304 (2006)
Taylor, J.M., et al.: Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007)
Golovach, V.N., et al.: Spin relaxation at the singlet-triplet crossing in a quantum dot. Phys. Rev. B 77, 045328 (2008)
Petta, J.R., et al.: Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett. 100, 067601 (2008)
Erlingsson, S.I., et al.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2005)
Erlingsson, S.I., Nazarov, Y.V.: Evolution of localized electron spin in a nuclear spin environment. Phys. Rev. B 70, 205327 (2004)
Dzyaloshinskii, I.: A thermodynamics theory of “weak” ferromagnetirm of antiferromagnetics; anisotropic superexchange interaction and weak ferromagnetism. J. Chem. Solids 4, 241 (1958)
Moriya, T.: Anisotropic exchange interaction of localized conduction-band electrons in semiconductors. Phys. Rev. 120, 91 (1960)
Kavokin, K.V.: Anisotropic exchange of localized conduction-band electrons in semiconductor. Phys. Rev. B 64, 075305 (2001)
Abragam, A.: The Principles of Nuclear Megnetism. Oxford University Press, Oxford (1961)
Abragam, A., Bleaney, B.: Entanglement of Formation of an Arbitrary State of Two Qubits. Dover, New York (1986)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Acknowledgments
We would like to thanks DGAPA-UNAM for support with the Project IN112012 and R.G. thanks CONACYT and CICESE for financial aid with a PhD scholarship.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guerrero M., R.J., Rojas, F. Thermal entanglement of a coupled electronic spins system: interplay between an external magnetic field, nuclear field and spin–orbit interaction. Quantum Inf Process 14, 1973–1996 (2015). https://doi.org/10.1007/s11128-015-0946-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-0946-8