Skip to main content
Log in

Semiquantum key distribution without invoking the classical party’s measurement capability

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the existing semiquantum key distribution (SQKD) protocols, the both parties must measure qubits in some bases. In this paper, we show that the classical party’s measurement capability is not necessary by constructing an SQKD protocol without invoking the classical Alice’s measurement capability. In particular, we prove that the proposed SQKD protocol is completely robust against joint attacks. Compared with the existing SQKD protocols, the number of the quantum states sent by Alice and Bob is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers. Systems and Signal Processing, pp. 175–179. IEEE, Bangalore India (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)

    Article  ADS  Google Scholar 

  5. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  6. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  8. Boyer, M., Kenigsberg, D., Mor, T.: Boyer, Kenigsberg, and Mor Reply. Phys. Rev. Lett. 102(9), 098902 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(6), 1195–1202 (2008)

    Article  Google Scholar 

  11. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  12. Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 046301 (2011)

    Article  ADS  Google Scholar 

  13. Zou, X., Qiu, D.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states”’. Phys. Rev. A 83(4), 046302 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9(06), 1427–1435 (2011)

    Article  MathSciNet  Google Scholar 

  15. Boyer, M., Mor, T.: On the robustness of (photonic) quantum key distribution with classical Alice. arXiv:1012.2418 (2010)

  16. Zhang, X.Z., Gong, W.G., Tan, Y.G., Ren, Z.Z., Guo, X.T.: Quantum key distribution series network protocol with \(M\)-classical Bobs. Chin. Phys. B 18, 2143–2148 (2009)

    Article  ADS  Google Scholar 

  17. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28, 100301 (2011)

    Article  ADS  Google Scholar 

  18. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  19. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    Article  MathSciNet  Google Scholar 

  20. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  21. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  22. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)

    Article  MathSciNet  Google Scholar 

  23. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  24. Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  25. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  26. Bethune, D.S., Risk, W.P.: An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light. IEEE J. Quantum Electron. 36(3), 340–347 (2000)

    Article  ADS  Google Scholar 

  27. Cerè, A., Lucamarini, M., Di Giuseppe, G., Tombesi, P.: Experimental test of two-way quantum key distribution in the presence of controlled noise. Phys. Rev. Lett. 96(20), 200501 (2006)

    Article  ADS  Google Scholar 

  28. Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 4(9), 726–730 (2008)

    Article  Google Scholar 

  29. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)

    Article  ADS  Google Scholar 

  30. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330–1333 (2000)

    Article  ADS  Google Scholar 

  31. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818–2821 (1996)

    Article  ADS  Google Scholar 

  32. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    Article  Google Scholar 

  33. Khoo, K., Heng, S.H.: Universal hash functions over \(GF(2^{n})\). In: Proceedings of IEEE International Symposium on Information Theory, p. 205. IEEE, Chicago (2004)

  34. Biham, E., Mor, T.: Security of quantum cryptography against collective attacks. Phys. Rev. Lett. 78(11), 2256 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for invaluable suggestions that help us improve the quality of the paper. This work is supported in part by the National Natural Science Foundation (Nos. 61272058, 61073054), the Natural Science Foundation of Guangdong Province of China (Nos. S2012040007324, 10251027501000004), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20100171110042), the Science and Technology Project of Jiangmen City of China (No. [2011]131), and the Foundation of Graduate Education Reform of Wuyi University (No. YJS-JGXM-14-02) and FCT PEst-OE/EEI/LA0008/2013 project namely through the IT internal project CVQuantum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Qiu, D., Zhang, S. et al. Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf Process 14, 2981–2996 (2015). https://doi.org/10.1007/s11128-015-1015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1015-z

Keywords

Navigation