Skip to main content
Log in

A multipartite entanglement measure based on coefficient matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantification of quantum entanglement has been extensively studied in past years. However, many existing entanglement measures are difficult to calculate. And lots of them are introduced only for bipartite system or only for the systems constituted by qubits. In this paper, we propose an entanglement measure for multipartite system based on vector lengths and the angles between vectors of the coefficient matrices. Our entanglement measure is simple and feasible, with a remarkable geometric meaning. Furthermore, we prove that our entanglement measure satisfies the three necessary conditions which are required for any entanglement measure: (1) It vanishes if and only if the state is (fully) separable; (2) it remains invariant under local unitary transformations; and (3) it cannot increase under local operation and classical communication. Finally, we apply our entanglement measure on some computational examples. It demonstrates that our entanglement measure is capable of dealing with quantum pure states with arbitrary dimensions and parties. Meanwhile, because it only needs to compute the vector lengths and the angles between vectors of every bipartition coefficient matrix, our entanglement measure is easy to calculate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 78, 2031 (1996)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47, 355–376 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. Horodecki, M.: Simplifying monotonicity conditions for entanglement measures. Open Syst. Inf. Dyn. 12, 231–237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demkowicz-Dobrzanski, R., Buchleitner, A., Kus, M., Mintert, M.: Evaluable multipartite entanglement measures: multipartite concurrences as entanglement monotones. Phys. Rev. A 74, 052303 (2006)

    Article  ADS  Google Scholar 

  12. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  13. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  14. Long, Y., Qiu, D., Long, D.: An entanglement measure based on two order minors. J. Phys. A Math. Theor. 42, 265301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. Huang, Y., Qiu, D.W.: Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf Process. 11, 235–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coffman, V., Kundu, G., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  17. Miyake, A.: Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 67, 012108 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  18. Lohmayer, R., Osterloh, A., Siewert, J., Uhlmann, A.: Entangled three-qubit states without concurrence and three-tangle. Phys. Rev. Lett. 97, 260502 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. Wong, A., Christensen, N.: Potential multiparticle entanglement measure. Phys. Rev. A 63, 044301 (2001)

    Article  ADS  Google Scholar 

  20. Osterloh, A., Siewert, J.: Constructing \(N\)-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005)

    Article  ADS  Google Scholar 

  21. Fei, S.M., Zhao, M.J., Chen, K., Wang, Z.X.: Experimental determination of entanglement for arbitrary pure states. Phys. Rev. A 80, 032320 (2009)

    Article  ADS  Google Scholar 

  22. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  23. Hassan, A., Joag, P.S.: Geometric measure for entanglement in \(N\)-qudit pure states. Phys. Rev. A 80, 042302 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Chen, L., Xu, A., Zhu, H.: Computation of the geometric measure of entanglement for pure multiqubit states. Phys. Rev. A 82, 032301 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  25. Li, X.R., Li, D.F.: Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states. Phys. Rev. A 86, 042332 (2012)

    Article  ADS  Google Scholar 

  26. Li, X.R., Li, D.F.: Classification of general \(n\)-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. Phys. Rev. Lett. 108, 180502 (2012)

    Article  ADS  MATH  Google Scholar 

  27. Vidal, G.: Entanglement of pure states for a single copy. Phys. Rev. Lett. 83, 1046–1049 (1999)

    Article  ADS  Google Scholar 

  28. Jonathan, D., Plenio, M.B.: Minimal conditions for local pure-state entanglement manipulation. Phys. Rev. Lett. 83, 1455–1458 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  29. Alberti, P.M., Uhlmann, A.: Stochasticity and Partial Order. Reidel, Dordrecht (1982)

    MATH  Google Scholar 

  30. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Rungta, P., Buzěk, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  32. Audenaert, K., Verstraete, F., Moor, B.D.: Variational characterizations of separability and entanglement of formation. Phys. Rev. A 64, 052304 (2001)

    Article  ADS  Google Scholar 

  33. Badziag, P., Deuar, P.: Concurrence in arbitrary dimensions. J. Mod. Opt. 49, 1289 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3, 223–227 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  35. Fan, H., Matsumoto, K., Imai, H.: Quantify entanglement by concurrence hierarchy. J. Phys. A Math. Gen. 36, 4151–4158 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Li, Y.Q., Zhu, G.Q.: Concurrence vectors for entanglement of high-dimensional systems. Front. Phys. China 3(3), 250–257 (2008)

    Article  ADS  Google Scholar 

  37. Bhaktavatsala Rao, D.D., Ravishankar, V.: A redefinition of concurrence and its generalisation to bosonic subsystems of N qubit systems (2003). Preprint quant-ph/0309047

  38. Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A Math. Gen. 38, 6777–6784 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. Heydari, H.: Concurrence for general multipartite states. J. Phys. A Math. Gen. 39, 15225–15229 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  40. Heydari, H.: Entanglement witnesses and concurrence for multi-qubit states. Quantum Inf. Comput. 8(89), 0791–0796 (2008)

    MathSciNet  Google Scholar 

  41. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Brown, I.D., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38, 1119–1131 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Li, H., Wang, S.H., Cui, J.L., Long, G.L.: Quantifying entanglement of arbitrary-dimensional multipartite pure states in terms of the singular values of coefficient matrices. Phys. Rev. A 87, 042335 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61272175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Yang, Gw., Hung, W.N.N. et al. A multipartite entanglement measure based on coefficient matrices. Quantum Inf Process 14, 2861–2881 (2015). https://doi.org/10.1007/s11128-015-1023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1023-z

Keywords

Navigation