Abstract
We investigate collective radiant properties of two separated atoms in X-type quantum states. We show that quantum correlations measured by quantum discord (QD) can trigger and enhance superradiance and subradiance in the two-atom system even though in the absence of interatomic quantum entanglement. We also explore quantum statistical properties of photons in the superradiance and subradiance by addressing the second-order correlation function. In particular, when the initial state of the two separated atoms is the Werner state with nonzero QD, we find that radiation photons in the superradiant region exhibit the nonclassical sub-Poissonian statistics and the degree of the sub-Poissonian statistics increases with increasing of the QD amount, while radiation photons in the subradiant region have either the sub-Poissonian or super-Poissonian statistics depending on the amount of QD and the directional angle. In the subradiant regime, we predict the QD-triggered photon statistics transition from the super-Poissonian to sub-Poissonian statistics. These results shed a new light on applications of QD as a quantum resource.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett 88, 017901-1–017901-4 (2001)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)
Datta, A., Shaji, V., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502-1–050502-4 (2008)
Merali, Z.: Quantum computing: the power of discord. Nature 474, 24–26 (2011)
Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501-1–200501-4 (2008)
Datta, A., Gharibian, S.: Signatures of nonclassicality in mixed-state quantum computation. Phys. Rev. A 79, 042325-1–042325-8 (2009)
Boixo, S., Aolita, L., Cavalcanti, D., Modi, K., Winter, A.: Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J. Quant. Inf. 9, 1643–1650 (2011)
Roa, L., Retamal, J.C., Alid-Vaccarezza, M.: Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401-1–080401-4 (2011)
Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328-1–022328-5 (2012)
Madhok, V., Datta, A.: Quantum discord as a resource in quantum communication. Int. J. Mod. Phys. B 27, 1245041–1245058 (2013)
Daki, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)
Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A 88, 022315-1–022315-4 (2013)
Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502-1–090502-4 (2008)
Piani, M., Christandl, M., Mora, C.E., Horodecki, P.: Broadcast copies reveal the quantumness of correlations. Phys. Rev. Lett. 102, 250503-1–250503-4 (2009)
Liu, Y., Lu, J., Zhou, L.: Quantum correlations of two qubits interacting with a macroscopic medium. Quantum Inf. Process. 14, 1343–1360 (2015)
Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit-qutrit systems. Quantum Inf. Process. 12, 3421–3435 (2013)
Xie, C.M., Liu, Y.M., Xing, H., Chen, Jl, Zhang, Z.J.: Quantum correlation swapping. Quantum Inf. Process. 14, 653–679 (2015)
Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys 84, 1655–1707 (2012)
Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323-1–032323-4 (2011)
Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324-1–032324-5 (2011)
Streltsov, A., Kampermannm, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)
Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501-1–070501-4 (2012)
Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413-1–224413-7 (2008)
Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108-1–022108-9 (2009)
Werlang, T., Trippe, C., Ribeiro, G.A.P., Gustavo, R.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)
Werlang, T., Ribeiro, G.A.P., Gustavo, R.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83, 062334-1–062334-10 (2011)
Wang, C., Zhang, Y.Y., Chen, Q.H.: Quantum correlations in the collective spin systems. Phys. Rev. A 85, 052112-1–052112-9 (2012)
Maziero, J., Guzman, H.C., leri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106-1–012106-6 (2010)
Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A 83, 052323-1–052323-7 (2011)
Yuan, J.B., Kuang, L.M.: Quantum-discord amplification induced by a quantum phase transition via a cavity-Bose-Einstein-condensate system. Phys. Rev. A 87, 024101-1–024101-5 (2013)
Xu, L., Yuan, J.B., Tan, Q.S., Zhou, L., Kuang, L.M.: Dynamics of quantum discord for two correlated qubits in two independent reservoirs at finite temperature. Eur. Phys. J. D 64, 565–571 (2011)
Yuan, J.B., Liao, J.Q., Kuang, L.M.: Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B 43, 165503-1–165503-9 (2010)
Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)
Freedhoff, H., van Kranendonk, J.: Theory of coherent resonant absorption and emission at infrared and optical frequencies. Can. J. Phys. 45, 1833–1859 (1967)
Stroud Jr, C.R., Eberly, J.H., Lama, W.L., Mandel, L.: Superradiant effects in systems of two-level atoms. Phys. Rev. A 5, 1094–1104 (1972)
Pavolini, D., Crubellier, A., Pillet, P., Cabaret, L., Liberman, S.: Experimental evidence for subradiance. Phys. Rev. Lett. 54, 1917–1920 (1985)
Skribanowitz, N., Herman, I.P., MacGillivray, J.C., Feld, M.S.: Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973)
DeVoe, R.G., Brewer, R.G.: Observation of superradiant and subradiant spontaneous emission of two trapped lons. Phys. Rev. Lett. 76, 2049–2052 (1996)
Scully, M.O., Fry, E.S., Raymond Ooi, C.H., Wodkiewicz, K.: Directed spontaneous emission from an extended ensemble of N atoms: timing is everything. Phys. Rev. Lett. 010501-1-010501-4 (2006)
Scully, M.O.: Correlated spontaneous emission on the Volga. Laser Phys. 17, 635–646 (2007)
Scully, M.O., Svidzinsky, A.A.: The super of superradiance. Science 325, 1510–1511 (2009)
Scully, M.O.: Collective lamb shift in single photon Dicke superradiance. Phys. Rev. Lett. 102, 143601-1–143601-4 (2009)
Svidzinsky, A.A., Chang, J.T., Scully, M.O.: Cooperative spontaneous emission of N atoms: many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators. Phys. Rev. A 81, 053821-1–053821-15 (2010)
Sete, E.A., Svidzinsky, A.A., Eleuch, H., Yang, Z., Nevelsa, R.D., Scully, M.O.: Correlated spontaneous emission on the Danube. J. Mod. Opt. 57, 1311–1330 (2010)
Svidzinsky, A.A.: Nonlocal effects in single-photon superradiance. Phys. Rev. A 85, 013821-1–013821-5 (2012)
Brooke, P.G., Marzlin, K.P., Cresser, J.D., Sanders, B.C.: Super- and subradiant emission of two-level systems in the near-Dicke limit. Phys. Rev. A 77, 033844-1–033844-13 (2008)
Choquette, J.J., Marzlin, K.P., Sanders, B.C.: Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface. Phys. Rev. A 82, 023827-1–023827-10 (2010)
Bienaime, T., Piovella, N., Kaiser, R.: Controlled Dicke subradiance from a large cloud of two-level systems. Phys. Rev. Lett. 108, 123602-1–123602-5 (2012)
Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S., Rueffer, R.: Collective lamb shift in single-photon superradiance. Science 328, 1248–1251 (2010)
Röhlsberger, R., Wille, H.C., Schlage, K., Sahoo, B.: Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2012)
Wolfe, E., Yelin, S.F.: Certifying separability in symmetric mixed states, and superradiance. Phys. Rev. Lett. 112, 140402-1–140402-5 (2014)
Lin, G.D., Yelin, S.F.: Superradiance: an integrated approach to cooperative effects in various systems. Adv. Atomic Mol. Opt. Phys. 61, 295–329 (2012)
Wiegner, R., Zanthier, J., von Agarwal, G.S.: Quantum-interference-initiated superradiant and subradiant emission from entangled atoms. Phys. Rev. A 84, 023805-1–023805-10 (2011)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314-1–062314-12 (2000)
Agarwal, G.S.: Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches. Quantum Optics. Springer, Berlin (1974)
Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)
Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303-1–042303-6 (2008)
Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105-1–042105-7 (2010)
Galve, F., Giorgi, G.L., Zambrini, R.: Maximally discordant mixed states of two qubits. Phys. Rev. A 83, 012102-1–012102-5 (2011)
Werner, R.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Davidovich, L.: Sub-Poissonian processes in quantum optics. Rev. Mod. Phys. 68, 127–173 (1996)
Acknowledgments
This work was supported by the 973 Program (Grant No. 2013CB921804), the NSFC (Grant Nos. 11375060, 11075050, and 11004050), the CPSFFP (Grant No. 2013T60769), and the HPNSF (Grant No. 11JJ7001). S. Q. Tang thanks Dr. Jie-Qiao Liao for useful discussions.
Conflict of interest
The authors declared that they have no conflict of interest to this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tang, SQ., Yuan, JB., Kuang, LM. et al. Quantum-discord-triggered superradiance and subradiance in a system of two separated atoms. Quantum Inf Process 14, 2883–2894 (2015). https://doi.org/10.1007/s11128-015-1026-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1026-9