Skip to main content
Log in

Coherent state quantum key distribution based on entanglement sudden death

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A method for quantum key distribution (QKD) using entangled coherent states is discussed which is designed to provide key distribution rates and transmission distances surpassing those of traditional entangled photon pair QKD by exploiting entanglement sudden death. The method uses entangled electromagnetic signal states of ‘macroscopic’ average photon numbers rather than single photon or entangled photon pairs, which have inherently limited rate and distance performance as bearers of quantum key data. Accordingly, rather than relying specifically on Bell inequalities as do entangled photon pair-based methods, the security of this method is based on entanglement witnesses and related functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Jaeger, G., Sergienko, A.V.: Entanglement sudden death: a threat to advanced quantum key distribution? Nat. Comput. 13, 459 (2014)

    Article  MathSciNet  Google Scholar 

  3. Jaeger, G., Simon, D., Sergienko, A.V.: Implications of disentanglement and locality induction for quantum information processing and cryptography. Quantum Matter 2, 427 (2013)

    Article  Google Scholar 

  4. Simon, D.S., Jaeger, G., Sergienko, A.V.: Coherent state quantum key distribution with entanglement witnessing. Phys. Rev. A 89, 012315 (2014)

    Article  ADS  Google Scholar 

  5. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992)

    Article  ADS  Google Scholar 

  6. Rice, D.A., Jaeger, G., Sanders, B.C.: Two-coherent-state interferometry. Phys. Rev. A 62, 012101 (2000)

    Article  ADS  Google Scholar 

  7. Boeuf, N., Branning, D., Chaperot, I., Dauler, E., Guerin, S., Jaeger, G., Muller, A., Migdall, A.L.: Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals. Opt. Eng. 9, 1016–1024 (2000)

    Article  ADS  Google Scholar 

  8. Kirby, B.T., Franson, J.D.: Nonlocal interferometry using macroscopic coherent states and weak nonlinearities. Phys. Rev. A 87, 053822 (2013)

    Article  ADS  Google Scholar 

  9. Simon, D.S., Jaeger, G., Sergienko, A.V.: Quantum information in communication and imaging. Int. J. Quantum Inf. 12, 1430004 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  11. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak non-linearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  12. Lukin, M.D., Imamoglu, A.: Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419 (2000)

    Article  ADS  Google Scholar 

  13. Harris, S.E., Field, J.E., Imamoglu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  14. Schmidt, H., Imamoglu, A.: Giant Kerr nonlinearities obtained by electromagnetically induced transparency Opt. Lett. 21, 1936–1938 (1996)

    Google Scholar 

  15. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. A 75, 4710 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  MATH  Google Scholar 

  18. Park, K., Jeong, H.: Entangled coherent states versus entangled photon pairs for practical quantum-information processing. Phys. Rev. A 82, 062325 (2010)

    Article  ADS  Google Scholar 

  19. Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393–397 (2006)

    Article  ADS  Google Scholar 

  21. Barbosa, F.A.S., de Faria, A.J., Coehlo, A.S., Cassemiro, K.N., Villar, A.S., Nussenzveig, P., Martinelli, M.: Disentanglement in bipartite continuous-variable systems. Phys. Rev. A 84, 052330 (2011)

    Article  ADS  Google Scholar 

  22. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  25. Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys. 39, 790 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jaeger, G., Shimony, A., Vaidman, L.: Two interferometric complementarities. Phys. Rev. A 51, 54 (1995)

    Article  ADS  Google Scholar 

  27. Jaeger, G., Horne, M.A., Shimony, A.: Complementarity of one-particle and two-particle interference. Phys. Rev. A 48, 1023 (1993)

    Article  ADS  Google Scholar 

  28. Arthurs, E., Goodman, M.S.: Quantum correlations: a generalized Heisenberg uncertainty relation. Phys. Rev. Lett. 60, 2447 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  29. Paris, M.G.A.: The modern tools of quantum mechanics: a tutorial on quantum states, measurements, and operations. Eur. Phys. J. Special Topics 203, 61–86 (2012)

    Article  ADS  Google Scholar 

  30. Shchukin, E., Vogel, W.: Inseparability criteria for continuous bipartite quantum states. Phys. Rev. Lett. 95, 230502 (2005)

    Article  ADS  Google Scholar 

  31. Shchukin, E., Vogel, W.: Erratum: inseparability criteria for continuous bipartite quantum states. Phys. Rev. Lett. 96, 200403 (2006)

    Article  ADS  Google Scholar 

  32. Vogel, W., Shchukin, E.: Nonclassicality and entanglement: observable conditions. J. Phys. Conf. Ser. 84, 012020 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the DARPA QUINESS program through US Army Research Office award W31P4Q-12-1-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg Jaeger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaeger, G., Simon, D. & Sergienko, A.V. Coherent state quantum key distribution based on entanglement sudden death. Quantum Inf Process 15, 1117–1133 (2016). https://doi.org/10.1007/s11128-015-1063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1063-4

Keywords

Navigation