Skip to main content
Log in

Balancing continuous-variable quantum key distribution with source-tunable linear optics cloning machine

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We show that the tolerable excess noise can be dynamically balanced in source preparation while inserting a tunable linear optics cloning machine (LOCM) for balancing the secret key rate and the maximal transmission distance of continuous-variable quantum key distribution (CVQKD). The intensities of source noise are sensitive to the tunable LOCM and can be stabilized to the suitable values to eliminate the impact of channel noise and defeat the potential attacks even in the case of the degenerated linear optics amplifier (LOA). The LOCM-additional noise can be elegantly employed by the reference partner of reconciliation to regulate the secret key rate and the transmission distance. Simulation results show that there is a considerable improvement in the secret key rate of the LOCM-based CVQKD while providing a tunable LOCM for source preparation with the specified parameters in suitable ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621–669 (2012)

    Article  ADS  Google Scholar 

  2. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  3. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349–359 (2011)

    Article  ADS  Google Scholar 

  4. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 1105011–5 (2011)

    Article  Google Scholar 

  5. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378–381 (2013)

    Article  ADS  Google Scholar 

  6. Fiurášek, J., Cerf, N.J.: Generation and characterization in a laboratory of \(\text{ C }\,2\otimes \text{ C } \text{ d }\) states of flying electrons and ions with negative or positive partial transpose possessing free or bound entanglement. Phys. Rev. A 86(6), 0623021–7 (2012)

    Google Scholar 

  7. Shen, Y., Peng, X., Guo, H.: Continuous-variable quantum key distribution with Gaussian source noise. Phys. Rev. A 83(5), 0523041–7 (2011)

    Article  Google Scholar 

  8. Yang, J., Xie, B., Guo, H.: Source monitoring for continuous-variable quantum key distribution. Phys. Rev. A 86(4), 0423141–6 (2012)

    Article  Google Scholar 

  9. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 0623131–6 (2013)

    Article  Google Scholar 

  10. Ma, X.-C.: S.-H Sun, M.-S Jiang, and L.-M Liang. Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87(5), 0523091–6 (2013)

    Article  Google Scholar 

  11. Ma, X.-C.: S.-H Sun, M.-S Jiang, and L.-M Liang. Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 0223391–7 (2013)

    Article  Google Scholar 

  12. Ma, X.-C.: S.-H Sun, M.-S Jiang, M. Gui, Y.-L. Zhou, and L.-M Liang. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields. Phys. Rev. A 89(3), 0323101–14 (2014)

    Article  Google Scholar 

  13. Huang, J.-Z., Kunz-Jacques, S., Jouguet, P., Weedbrook, C., Yin, Z.-Q., Wang, S., Chen, W., Guo, G.-G., Han, Z.-F.: Small-angle neutron scattering study of differences in phase behavior of silica nanoparticles in the presence of lysozyme and bovine serum albumin proteins. Phys. Rev. A 89(3), 0323041–9 (2014)

    Google Scholar 

  14. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72(1), 0123321–17 (2005)

    Article  Google Scholar 

  15. García-Patrón, R.: Quantum Information with Optical Continuous Variables: from Bell Tests to Key Distribution. Ph.D. thesis, Universit’e Libre de Bruxelles, (2007)

  16. Dong, D., Chen, C., Li, H., Tarn, T.-J.: Quantum reinforcement learning. IEEE trans. System, Man and Cyberetics 38(5), 1207–1220 (2008)

    Article  Google Scholar 

  17. Chen, C., Dong, D., Long, R., Petersen, I.R., Rabitz, H.A.: Sampling-based learning control of inhomogeneous quantum ensembles. Phys. Rev. A 89(2), 0234021–7 (2014)

    Google Scholar 

  18. Fang, J., Huang, P., Zeng, G.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89(2), 0223151–9 (2014)

    Article  Google Scholar 

  19. Huang, P., He, G., Fang, J., Zeng, G.: Tuning non-Markovianity by spin-dynamics control. Phys. Rev. A 87(2), 0223171–7 (2013)

    Google Scholar 

  20. Haderka, O., Michalek, V., Urbasek, V., Jezek, M.: Fast time-domain balanced homodyne detection of light. Appl. Opt. 48(15), 2884–2889 (2009)

    Article  ADS  Google Scholar 

  21. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B: Mol. Opt. Phys. 42(11), 1140141–10 (2009)

    Article  Google Scholar 

  22. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Andersen, U.L., Josse, V., Leuchs, G.: Unconditional quantum cloning of coherent states with linear optics. Phys. Rev. Lett. 94(24), 2405031–4 (2005)

    Article  Google Scholar 

  24. Serafini, A.: Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 96(11), 1104021–4 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, 61401519, 61572529) and partly by China Postdoctoral Science Foundation (2013M542119, 2014T70772).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Lv, G. & Zeng, G. Balancing continuous-variable quantum key distribution with source-tunable linear optics cloning machine. Quantum Inf Process 14, 4323–4338 (2015). https://doi.org/10.1007/s11128-015-1100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1100-3

Keywords

Navigation