Skip to main content
Log in

Multi-party quantum private comparison with an almost-dishonest third party

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This article proposes the first multi-party quantum private comparison protocol with an almost-dishonest third party, where many participants can compare their secrets in either ascending or descending order without revealing any secret information to anyone. In order to do that, the participants need not to pre-share any secret key between them. As a consequence, the proposed scheme can be enforced in several environments such as multi-party ranking and multi-data ranking protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

  2. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  3. Yang, C.-W., Kao, S.-H., Hwang, T.: Comment on “Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise”. Quantum Inf. Process. 12, 2871–2875 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Yang, Y.-G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Zhang, W.-W., Zhang, K.-J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1981–1990 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  6. Wang, C., Xu, G., Yang, Y.-X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11, 1350039 (2013)

    Article  MathSciNet  Google Scholar 

  7. Liu, X.-T., Zhao, J.-J., Wang, J., Tang, C.-J.: Cryptanalysis of the secure quantum private comparison protocol. Phys. Scr. 87, 065004 (2013)

    Article  ADS  Google Scholar 

  8. Chen, X.-B., Su, Y., Niu, X.-X., Yang, Y.-X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101–112 (2012)

    Article  ADS  Google Scholar 

  9. Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  10. Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  11. Liu, B., Gao, F., Jia, H.-Y., Huang, W., Zhang, W.-W., Wen, Q.-Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  12. Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. Li, Y.-B., Wang, T.-Y., Chen, H.-Y., Li, M.-D., Yang, Y.-T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52, 2818–2825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al’.s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110 (2012)

    Article  ADS  Google Scholar 

  15. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)

    Article  MathSciNet  Google Scholar 

  16. Yang, Y.-G., Xia, J., Jia, X.I.N., Shi, L.E.I., Zhang, H.U.A.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10, 1250065 (2012)

    Article  MathSciNet  Google Scholar 

  17. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with \(\upchi \)-type state. Int. J. Theor. Phys. 51, 69–77 (2011)

    Article  MathSciNet  Google Scholar 

  18. Li, Y.-B., Qin, S.-J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12, 2191–2205 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  19. Liu, W., Wang, Y.-B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51, 3596–3604 (2012)

    Article  MATH  Google Scholar 

  20. Zi, W., Guo, F., Luo, Y., Cao, S., Wen, Q.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52, 3212–3219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia, H.-Y., Wen, Q.-Y., Song, T.-T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  22. Yao, A.C.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, 1982. SFCS ’08, pp. 160–164 (1982)

  23. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Zhang, W.-W., Li, D., Zhang, K.-J., Zuo, H.-J.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12, 2241–2249 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  25. Yu, C.-H., Guo, G.-D., Lin, S.: Quantum private comparison with \(d\)-level single-particle states. Phys. Scr. 88, 065013 (2013)

    Article  ADS  Google Scholar 

  26. Lin, S., Sun, Y., Liu, X.-F., Yao, Z.-Q.: Quantum private comparison protocol with \(d\)-dimensional Bell states. Quantum Inf. Process. 12, 559–568 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  27. Guo, F., Gao, F., Qin, S., Zhang, J., Wen, Q.: Quantum private comparison protocol based on entanglement swapping of \(d\)-level Bell states. Quantum Inf. Process. 12, 2793–2802 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13, 2370–2389 (2014)

    MathSciNet  Google Scholar 

  29. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on \(d\)-dimensional entangled states. Quantum Inf. Process. 13, 2343–2352 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  31. Gao, F., Lin, S., Wen, Q.-Y., Zhu, F.-C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Article  ADS  Google Scholar 

  32. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Bradler–Dusek protocol. Quantum Info. Comput. 7, 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  34. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for partially supporting this research in finance under the Contract No. MOST 103-2221-E-006-177-. We also would like to thank our editor Yaakov S Weinstein and all the anonymous reviewers for all their valuable suggestions. We would like to sincerely thank Mr. Hung-Shih Min for his help during revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Appendices

Appendix 1

$$\begin{aligned}&\frac{1}{\sqrt{d}}\sum \limits _{p=0}^{d-1} {\left| {pp\ldots p} \right\rangle _{n}}\\&\quad =\frac{1}{\sqrt{d}}\sum \limits _{p=0}^{d-1} \left( \frac{1}{\sqrt{d}}\sum \limits _{k_{1}=0}^{d-1} {e^{\frac{2\pi ipk_{1}}{d}}} F\left| {k_{1}} \right\rangle \otimes \frac{1}{\sqrt{d}}\sum \limits _{k_{2}=0}^{d-1} {e^{\frac{2\pi ipk_{2}}{d}}}F\left| {k_{2}} \right\rangle \otimes \cdots \otimes \frac{1}{\sqrt{d}}\sum \limits _{k_{n}=0}^{d-1} {e^{\frac{2\pi ipk_{n}}{d}}}F\left| {k_{n}} \right\rangle \right) \\&\quad =\frac{1}{\sqrt{d^{n+1}}}\sum \limits _{k_{1},k_{2}, \ldots ,k_{n}=0}^{d-1}{\sum \limits _{p=0}^{d-1} {\left( {e^{\frac{2\pi ipk_{1}}{d}}F\left| {k_{1}}\right\rangle \otimes e^{\frac{2\pi ipk_{2}}{d}}F\left| {k_{2}}\right\rangle \otimes \cdots \otimes e^{\frac{2\pi ipk_{n}}{d}}F\left| {k_{n}} \right\rangle }\right) }}\\&\quad =\frac{1}{\sqrt{d^{n+1}}}\sum \limits _{k_{1},k_{2}, \ldots ,k_{n}=0}^{d-1}{\sum \limits _{p=0}^{d-1} {e^{\frac{2\pi i\left( {pk_{1}+pk_{2}+\cdots +pk_{n}}\right) }{d}}}} \left( {F\left| {k_{1}} \right\rangle \otimes F\left| {k_{2}} \right\rangle \otimes \cdots \otimes F\left| {k_{n}} \right\rangle }\right) \\&\quad =\frac{1}{\sqrt{d^{n+1}}}\sum \limits _{k_{1},k_{2}, \ldots ,k_{n}=0}^{d-1}{\sum \limits _{p=0}^{d-1} {e^{\frac{2\pi ip\left( {k_{1}+k_{2}+\cdots +k_{n}}\right) }{d}}}} \left( {F\left| {k_{1}} \right\rangle \otimes F\left| {k_{2}} \right\rangle \otimes \cdots \otimes F\left| {k_{n}} \right\rangle }\right) \\&\quad =\frac{1}{\sqrt{d}}\sum \limits _{k_{1}\oplus k_{2}\oplus \cdots \oplus k_{n}=0} {F\left| {k_{1}} \right\rangle \otimes F\left| {k_{2}} \right\rangle \otimes \cdots \otimes F\left| {k_{n}} \right\rangle }\\&\frac{1}{\sqrt{2^{-1}d}}\sum \limits _{q=0}^{\frac{d}{2}-1} {\left| {qq\ldots q}\right\rangle _{n}} \\&\quad =\frac{1}{\sqrt{2^{-1}d}}\sum \limits _{q=0}^{\frac{d}{2}-1} {\left( {\frac{1}{\sqrt{d}}\sum \limits _{k_{1}=0}^{d-1} {e^{\frac{2\pi iqk_{1}}{d}}} F\left| {k_{1}} \right\rangle \otimes \frac{1}{\sqrt{d}}\sum \limits _{k_{2}=0}^{d-1} {e^{\frac{2\pi iqk_{2}}{d}}}F\left| {k_{2}} \right\rangle \otimes \cdots \otimes \frac{1}{\sqrt{d}}\sum \limits _{k_{n}=0}^{d-1} {e^{\frac{2\pi iqk_{n}}{d}}}F\left| {k_{n}} \right\rangle }\right) } \\&\quad =\frac{1}{\sqrt{2^{-1}d^{n+1}}}\sum \limits _{k_{1},k_{2}, \ldots ,k_{n}=0}^{d-1}{\sum \limits _{q=0}^{\frac{d}{2}-1} {\left( {e^{\frac{2\pi iqk_{1}}{d}}F\left| {k_{1}} \right\rangle \otimes e^{\frac{2\pi iqk_{2}}{d}}F\left| {k_{2}} \right\rangle \otimes \cdots \otimes e^{\frac{2\pi iqk_{n}}{d}}F\left| {k_{n}} \right\rangle }\right) }}\\&\quad =\frac{1}{\sqrt{2^{-1}d^{n+1}}}\sum \limits _{k_{1},k_{2}, \ldots ,k_{n}=0}^{d-1}{\sum \limits _{q=0}^{\frac{d}{2}-1} {e^{\frac{2\pi i\left( {qk_{1}+qk_{2}+\cdots +qk_{n}}\right) }{d}}}} \left( {F\left| {k_{1}} \right\rangle \otimes F\left| {k_{2}} \right\rangle \otimes \cdots \otimes F\left| {k_{n}} \right\rangle }\right) \\&\quad =\frac{1}{\sqrt{2^{-1}d^{n+1}}}\sum \limits _{k_{1},k_{2},\ldots ,k_{n}=0}^{d-1} {\sum \limits _{q=0}^{\frac{d}{2}-1} {e^{\frac{2\pi iq\left( {k_{1}+k_{2}+\cdots +k_{n}}\right) }{d}}}} \left( {F\left| {k_{1}} \right\rangle \otimes F\left| {k_{2}} \right\rangle \otimes \cdots \otimes F\left| {k_{n}} \right\rangle }\right) \\&\quad =\frac{1}{\sqrt{2^{-1}d}}\sum \limits _{k} {e^{\frac{2\pi iq\left( {k_{1}+k_{2}+\cdots +k_{n}}\right) }{d}}F\left| {k_{1}} \right\rangle \otimes F\left| {k_{2}} \right\rangle \otimes \cdots \otimes F\left| {k_{n}} \right\rangle } \end{aligned}$$

\((k~\hbox {satisfies}~k_{1}\oplus k_{2}\oplus \cdots \oplus k_{n}\ne 0\left( {\hbox {mod}~2}\right) ~\hbox {or}~k_{1}\oplus k_{2}\oplus \cdots \oplus k_{n}=0\left( {\hbox {mod}~d}\right) )\)

Appendix 2

Theorem 1

The proposed scheme adequately performs the comparison of size relation.

Proof

In our proposed protocol, let \(s_{i}\) be the secret of participant i and \(\left| {p_{i}}\rangle \right. \), \(\left| {q_{i}} \rangle \right. \) be two initial states that the TP sends to the participant i. Now, we further consider that \(\left\{ {s_{i}} \right\} _{\max }\) be the maximum size of the secret \(s_{i}\), where \(l=\left\{ {s_{i}} \right\} _{\max } +1\), \(d=2\,*\,l,\) and \(\left| {q_{i}^{{\prime }{\prime }}} \rangle \right. \) denotes the qubit of the participant i that he/she sends to TP. Now, we demonstrate that how the proposed scheme performs the comparison of size relation.

$$\begin{aligned}&\left| {q_{i}^{{\prime }{\prime }}}\rangle \right. =\mathop {\prod }\nolimits _{s_{i}\oplus p_{i}} \left| {q_{i}}\rangle \right. =\left| {s_{i}+p_{i}+q_{i}\left( {\hbox {mod}~d}\right) } \right. \\&\hbox {If}~k=p_{i}+q_{i}\left( {\hbox {mod}~d}\right) \\&\hbox { then }k+s_{i}\in k\sim k+l-1\left( {\hbox {mod}~d}\right) \\&\exists ~\hbox {area:}\left\{ {k+l\sim k+2l-1\left( {\hbox {mod}~d}\right) } \right\} \, \hbox {must be empty}. \end{aligned}$$

Since the size relation of \(k+s_{i}\) is equal to the size relation of \(s_{i}\), therefore, we can constitute the size relation of \(s_{i},\) using the non-empty area. In this way, the proposed scheme can perform the comparison of size relation. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SL., Hwang, T. & Gope, P. Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf Process 14, 4225–4235 (2015). https://doi.org/10.1007/s11128-015-1104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1104-z

Keywords

Navigation