Skip to main content

Advertisement

Log in

A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme for a secure message communication network with authentication following the idea in controlled teleportation. In this scheme, the servers of the network provide the service to prepare the entangled states as quantum channels. For preventing the eavesdropping, a security checking method is suggested. After the security check, any two users in the network may communicate securely and directly under the control of the servers on the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India (IEEE, New York) (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  6. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  7. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  8. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  9. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  10. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  11. Zhang, Y.S., Li, C.F., Guo, G.C.: Quantum key distribution via quantum encryption. Phys. Rev. A 64, 024302 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  12. Leung, D.W.: Quantum vernam cipher. Quantum Inf. Comput. 2, 14 (2002)

    MathSciNet  Google Scholar 

  13. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  14. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Deng, F.G., et al.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006)

    Article  ADS  Google Scholar 

  16. Li, X.H., et al.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23 (2007)

    Article  ADS  MATH  Google Scholar 

  17. Zhou, N., Liu, Y., Zeng, G., Xiong, J., Zhu, F.: Novel qubit block encryption algorithm with hybrid keys. Phys. A 375, 693 (2007)

    Article  Google Scholar 

  18. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65, 05232 (2002)

    Article  Google Scholar 

  19. Li, X., Barnum, H.: Quantum authentication using entangled states. Int. J. Found. Comput. Sci. 15, 609 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254, 380 (2005)

    Article  ADS  Google Scholar 

  21. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  22. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  23. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  24. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  25. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  26. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  27. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)

    Article  ADS  Google Scholar 

  28. Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B 39, 1975 (2006)

    Article  ADS  Google Scholar 

  29. Deng, F.G., Li, X.H., Zhou, H.Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Lett. A 372, 1957 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  31. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  32. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  33. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  34. Wang, C., et al.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  35. Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)

    Article  ADS  Google Scholar 

  36. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  37. Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942 (2011)

    Article  ADS  Google Scholar 

  38. Gu, B., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  39. Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Wu, Y.H., Zhai, W.D., Cao, W.Z., Li, C.: Quantum secure direct communication by using general entangled states. Int. J. Theor. Phys. 50, 325 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gao, G., Fang, M., Yang, R.M.: Quantum secure direct communication by swapping entanglements of 317 dimensional bell states. Int. J. Theor. Phys. 50, 882 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923 (2012)

    Article  MATH  Google Scholar 

  43. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ren, B.C., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30 (2013)

    Article  ADS  Google Scholar 

  45. Gu, B., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52, 4461 (2013)

    Article  MATH  Google Scholar 

  46. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58, 4571 (2013)

    Article  Google Scholar 

  48. Bostrm, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  49. Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601 (2004)

    Article  ADS  Google Scholar 

  50. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  52. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)

    Article  ADS  Google Scholar 

  53. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  54. Li, X.H., Guo, D.F., Yu, Z.H.: Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger–Horne–Zeilinger states. Chin. Phys. Lett. 24, 1151 (2007)

    Article  ADS  Google Scholar 

  55. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)

    Article  ADS  Google Scholar 

  56. Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A Math. Theor. 40, 13121 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states. Chin. Phys. 54(12), 2208 (2011)

    Google Scholar 

  58. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)

    Article  MathSciNet  Google Scholar 

  59. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)

    Article  MATH  Google Scholar 

  60. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  62. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 617 (2004)

    Article  Google Scholar 

  63. Wen, X.J., et al.: Secure quantum telephone. Opt. Commun. 275, 278 (2007)

    Article  ADS  Google Scholar 

  64. Sun, Y., et al.: Improving the security of secure quantum telephone against an attack with fake particles and local operations. Opt. Commun. 282, 2278 (2009)

    Article  ADS  Google Scholar 

  65. Naseri, M.: Eavesdropping on secure quantum telephone protocol with dishonest server. Opt. Commun. 282, 3375 (2009)

    Article  ADS  Google Scholar 

  66. Jin, X.R., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006)

    Article  ADS  Google Scholar 

  67. Deng, F.G., et al.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676 (2006)

    Article  ADS  Google Scholar 

  68. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282, 1939 (2009)

    Article  ADS  Google Scholar 

  69. Chamoli, A., Bhandari, C.M.: Secure direct communication based on ping–pong protocol. Quantum Inf. Process. 8, 347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Naseri, M.: Comment on: “secure direct communication based on ping-pong protocol” [Quantum Inf. Process. 8, 347 (2009)], Quantum Inf. Process. 9, 693 (2010)

  71. Phoenix, S.J.D., Barnett, S.M., Townsend, P.D., Blow, K.J.: Multi-user quantum cryptography on optical networks. J. Mod. Opt. 42, 1155 (1995)

    Article  ADS  Google Scholar 

  72. Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385, 47 (1997)

    Article  ADS  Google Scholar 

  73. Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  74. Deng, F.G., et al.: A theoretical scheme for multi-user quantum key distribution with N Einstein–Podolsky–Rosen pairs on a passive optical network. Chin. Phys. Lett. 19, 893 (2002)

    Article  ADS  Google Scholar 

  75. Li, C.Y., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  76. Deng, F.G., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359, 359 (2006)

    Article  ADS  MATH  Google Scholar 

  77. Deng, F.G., et al.: Quantum secure direct communication network with superdense coding and decoy photons. Phys. Scr. 76, 25 (2007)

    Article  ADS  Google Scholar 

  78. Deng, F.G., et al.: Economical quantum secure direct communication network with single photons. Chin. Phys. 16, 3553 (2007)

    Article  ADS  Google Scholar 

  79. Gu, B., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56, 659 (2011)

    Article  ADS  MATH  Google Scholar 

  80. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. Tsai, C.-W., Hwang, T.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 49, 1969 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  82. Banerjee, A., Patel, K., Pathak, A.: Comment on quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 50, 507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. Song, L., Chen, R.-Y.: The scheme of quantum teleportation using four-qubit cluster state in trapped ions. Int. J. Theor. Phys. 54, 421 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN. It is a pleasure to thank the reviewers and the editor for their many fruitful discussions about the topic and of Dr. Majid Farahian for his helpful comments and the final edition of the paper. Also, the authors would like to thank Soheila Gholipour, Yasna Naseri and Viana Naseri for their interests in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosayeb Naseri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, M., Raji, M.A., Hantehzadeh, M.R. et al. A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation. Quantum Inf Process 14, 4279–4295 (2015). https://doi.org/10.1007/s11128-015-1107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1107-9

Keywords