Abstract
We propose a scheme for a secure message communication network with authentication following the idea in controlled teleportation. In this scheme, the servers of the network provide the service to prepare the entangled states as quantum channels. For preventing the eavesdropping, a security checking method is suggested. After the security check, any two users in the network may communicate securely and directly under the control of the servers on the network.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India (IEEE, New York) (1984)
Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)
Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)
Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Zhang, Y.S., Li, C.F., Guo, G.C.: Quantum key distribution via quantum encryption. Phys. Rev. A 64, 024302 (2001)
Leung, D.W.: Quantum vernam cipher. Quantum Inf. Comput. 2, 14 (2002)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)
Deng, F.G., et al.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006)
Li, X.H., et al.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23 (2007)
Zhou, N., Liu, Y., Zeng, G., Xiong, J., Zhu, F.: Novel qubit block encryption algorithm with hybrid keys. Phys. A 375, 693 (2007)
Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65, 05232 (2002)
Li, X., Barnum, H.: Quantum authentication using entangled states. Int. J. Found. Comput. Sci. 15, 609 (2004)
Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254, 380 (2005)
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)
Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)
Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B 39, 1975 (2006)
Deng, F.G., Li, X.H., Zhou, H.Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Lett. A 372, 1957 (2008)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)
Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Wang, C., et al.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15 (2005)
Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)
Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)
Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942 (2011)
Gu, B., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)
Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831 (2011)
Wu, Y.H., Zhai, W.D., Cao, W.Z., Li, C.: Quantum secure direct communication by using general entangled states. Int. J. Theor. Phys. 50, 325 (2011)
Gao, G., Fang, M., Yang, R.M.: Quantum secure direct communication by swapping entanglements of 317 dimensional bell states. Int. J. Theor. Phys. 50, 882 (2011)
Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923 (2012)
Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946 (2012)
Ren, B.C., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30 (2013)
Gu, B., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52, 4461 (2013)
Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22 (2013)
Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58, 4571 (2013)
Bostrm, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601 (2004)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)
Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)
Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)
Li, X.H., Guo, D.F., Yu, Z.H.: Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger–Horne–Zeilinger states. Chin. Phys. Lett. 24, 1151 (2007)
Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)
Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A Math. Theor. 40, 13121 (2007)
Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states. Chin. Phys. 54(12), 2208 (2011)
Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)
Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)
Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)
Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 617 (2004)
Wen, X.J., et al.: Secure quantum telephone. Opt. Commun. 275, 278 (2007)
Sun, Y., et al.: Improving the security of secure quantum telephone against an attack with fake particles and local operations. Opt. Commun. 282, 2278 (2009)
Naseri, M.: Eavesdropping on secure quantum telephone protocol with dishonest server. Opt. Commun. 282, 3375 (2009)
Jin, X.R., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006)
Deng, F.G., et al.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676 (2006)
Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282, 1939 (2009)
Chamoli, A., Bhandari, C.M.: Secure direct communication based on ping–pong protocol. Quantum Inf. Process. 8, 347 (2009)
Naseri, M.: Comment on: “secure direct communication based on ping-pong protocol” [Quantum Inf. Process. 8, 347 (2009)], Quantum Inf. Process. 9, 693 (2010)
Phoenix, S.J.D., Barnett, S.M., Townsend, P.D., Blow, K.J.: Multi-user quantum cryptography on optical networks. J. Mod. Opt. 42, 1155 (1995)
Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385, 47 (1997)
Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651 (1996)
Deng, F.G., et al.: A theoretical scheme for multi-user quantum key distribution with N Einstein–Podolsky–Rosen pairs on a passive optical network. Chin. Phys. Lett. 19, 893 (2002)
Li, C.Y., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)
Deng, F.G., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359, 359 (2006)
Deng, F.G., et al.: Quantum secure direct communication network with superdense coding and decoy photons. Phys. Scr. 76, 25 (2007)
Deng, F.G., et al.: Economical quantum secure direct communication network with single photons. Chin. Phys. 16, 3553 (2007)
Gu, B., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56, 659 (2011)
Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516 (2009)
Tsai, C.-W., Hwang, T.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 49, 1969 (2010)
Banerjee, A., Patel, K., Pathak, A.: Comment on quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 50, 507 (2011)
Song, L., Chen, R.-Y.: The scheme of quantum teleportation using four-qubit cluster state in trapped ions. Int. J. Theor. Phys. 54, 421 (2015)
Acknowledgments
This work is supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN. It is a pleasure to thank the reviewers and the editor for their many fruitful discussions about the topic and of Dr. Majid Farahian for his helpful comments and the final edition of the paper. Also, the authors would like to thank Soheila Gholipour, Yasna Naseri and Viana Naseri for their interests in this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Naseri, M., Raji, M.A., Hantehzadeh, M.R. et al. A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation. Quantum Inf Process 14, 4279–4295 (2015). https://doi.org/10.1007/s11128-015-1107-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1107-9