Skip to main content
Log in

Measurement-device-independent quantum key distribution with q-plate

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The original measurement-device-independent quantum key distribution is reviewed and a modified protocol using rotation invariant photonic state is proposed. A hybrid encoding approach combined polarization qubit with orbit angular momentum qubit is adopted to overcome the polarization misalignment associated with random rotations in long-distance quantum key distribution. The initial encoding and final decoding of information in our MDI-QKD implementation protocol can be conveniently performed in the polarization space, while the transmission is done in the rotation invariant hybrid space. Our analysis indicates that both the secure key rate and transmission distance can be improved with our modified protocol owing to the lower quantum bit error rate. Furthermore, our hybrid encoding approach only needs to insert four q-plates in practical experiment and to overcome the polarization misalignment problem mentioned above without including any feedback control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography. In: Proceedings of the IEEE International Conference Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  6. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  7. Ma, X.F., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  8. Tamaki, K., Lo, H.K., Fung, C.H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)

    Article  ADS  Google Scholar 

  9. Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, LiM: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 042335 (2014)

    Article  ADS  Google Scholar 

  10. Zhang, Y.C., Li, Z.Y., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)

    Article  ADS  Google Scholar 

  11. Rubenok, A., Slater, J.A., Chan, P., Lucio, I., Martinez, Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2014)

    Article  Google Scholar 

  12. Ferreira da Silva, T., Vitoreti, D., Xavier, G.B., do Amaral, G.C., Temporao, G.P., vonder Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013)

    Article  ADS  Google Scholar 

  13. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  14. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2013)

    Article  Google Scholar 

  15. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobasen, C.S., Andersen, U.L.: High-rate quantum cryptography in untrusted networks. Nat. Photonics 9, 397–402 (2015)

    Article  ADS  Google Scholar 

  16. Xu, F.H., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15, 113007 (2013)

    Article  ADS  Google Scholar 

  17. Aolita, L., Walborn, S.: Quantum communication without alignment using multiple-qubit single-photon states. Phys. Rev. Lett. 98, 100501 (2007)

    Article  ADS  Google Scholar 

  18. Souza, C.E.R., et al.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77, 032345 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Wabnig, J., Bitauld, D., Li, H.W., Laing, A., O’Brien, J.L., Niskanen, O.: Demonstration of free-space reference frame independent quantum key distribution. New J. Phys. 15, 073001 (2013)

    Article  ADS  Google Scholar 

  20. Vallone, G., Ambrosio, V.D., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2013)

    Article  Google Scholar 

  21. Ambrosio, V.D., Nagali, E., Walborn, S.P., Aolita, L., Slussarenko, S., Marrucci, L., Sciarrino, F.: Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, 961 (2012)

    Article  Google Scholar 

  22. Laing, Scarani, V., Rarity, J.G., O’Brien, J.L.: Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)

    Article  ADS  Google Scholar 

  23. Marrucci, L., Manzo, C., Paparo, D.: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 1163905 (2006)

    Article  Google Scholar 

  24. Marrucci, L., Karimi, E., Slussareko, S., Piccirillo, B., Santamato, E., Nagali, E., Sciarrino, F.: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, 064001 (2011)

    Article  ADS  Google Scholar 

  25. Slussarenko, S., Murauski, A., Du, T., Chigrinov, V., Marrucci, L., Santamato, E.: Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Exp. 19, 4085–4090 (2011)

    Article  ADS  Google Scholar 

  26. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  27. Ma, X.F., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank S. H. Sun for many helpful advices. This work is supported by the National Natural Science Foundation of China (Grant No. 61106068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Shang-Hong, Z. & Ying, S. Measurement-device-independent quantum key distribution with q-plate. Quantum Inf Process 14, 4575–4584 (2015). https://doi.org/10.1007/s11128-015-1147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1147-1

Keywords

Navigation